下面验证上面三条结论

验证第一条结论:

package Second;

public class MyObject {
}
package Second;

public class Service {

    public void testMethod1(MyObject object) {
synchronized (object) {
try {
System.out.println("testMethod1 ____getLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
Thread.sleep(2000);
System.out.println("testMethod1 releaseLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} }
package Second;

public class ThreadA extends Thread {

    private Service service;
private MyObject object; public ThreadA(Service service, MyObject object) {
super();
this.service = service;
this.object = object;
} @Override
public void run() {
super.run();
service.testMethod1(object);
} }
package Second;

public class ThreadB extends Thread {
private Service service;
private MyObject object; public ThreadB(Service service, MyObject object) {
super();
this.service = service;
this.object = object;
} @Override
public void run() {
super.run();
service.testMethod1(object);
} }
package Second;

public class Run1_1 {

    public static void main(String[] args) {
Service service = new Service();
MyObject object = new MyObject(); ThreadA a = new ThreadA(service, object);
a.setName("a");
a.start(); ThreadB b = new ThreadB(service, object);
b.setName("b");
b.start();
} }

同步的原因是使用了同一个“对象监视器“”。如果使用不同的“”对象监视器“”会出现什么效果呢?见下面

package Second;

public class Run1_2 {

    public static void main(String[] args) {
Service service = new Service();
MyObject object1 = new MyObject();
MyObject object2 = new MyObject(); ThreadA a = new ThreadA(service, object1);
a.setName("a");
a.start(); ThreadB b = new ThreadB(service, object2);
b.setName("b");
b.start();
} }
package Second;

public class Run1_2 {

    public static void main(String[] args) {
Service service = new Service();
MyObject object1 = new MyObject();
MyObject object2 = new MyObject(); ThreadA a = new ThreadA(service, object1);
a.setName("a");
a.start(); ThreadB b = new ThreadB(service, object2);
b.setName("b");
b.start();
} }

验证第2个结论

package Second;

public class MyObject {
synchronized public void speedPrintString() {
System.out.println("speedPrintString ____getLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
System.out.println("-----------------");
System.out.println("speedPrintString releaseLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
}
}
package Second;

public class Service {

    public void testMethod1(MyObject object) {
synchronized (object) {
try {
System.out.println("testMethod1 ____getLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
Thread.sleep(5000);
System.out.println("testMethod1 releaseLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} }
package Second;

public class ThreadA extends Thread {

    private Service service;
private MyObject object; public ThreadA(Service service, MyObject object) {
super();
this.service = service;
this.object = object;
} @Override
public void run() {
super.run();
service.testMethod1(object);
} }
package Second;

public class ThreadB extends Thread {
private MyObject object; public ThreadB(MyObject object) {
super();
this.object = object;
} @Override
public void run() {
super.run();
object.speedPrintString();
}
}
package Second;

public class Run {

    public static void main(String[] args) throws InterruptedException {
Service service = new Service();
MyObject object = new MyObject(); ThreadA a = new ThreadA(service, object);
a.setName("a");
a.start(); Thread.sleep(100); ThreadB b = new ThreadB(object);
b.setName("b");
b.start();
} }

验证第3个结论

其他代码与第二个实验相同

package Second;

public class MyObject {
public void speedPrintString() {
synchronized (this) {
System.out.println("speedPrintString ____getLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
System.out.println("-----------------");
System.out.println("speedPrintString releaseLock time="
+ System.currentTimeMillis() + " run ThreadName="
+ Thread.currentThread().getName());
}
}
}

静态同步synchronized方法与synchronized(class)代码块

是对当前的*.java文件对应的class类进行持锁

package Second;

public class Service {

    synchronized public static void printA() {
try {
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "进入printA");
Thread.sleep(3000);
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "离开printA");
} catch (InterruptedException e) {
e.printStackTrace();
}
} synchronized public static void printB() {
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "进入printB");
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "离开printB");
} }
package Second;

public class ThreadA extends Thread {
@Override
public void run() {
Service.printA();
} }
package Second;

public class ThreadB extends Thread {
@Override
public void run() {
Service.printB();
}
}
package Second;

public class Run {

    public static void main(String[] args) {

        ThreadA a = new ThreadA();
a.setName("A");
a.start(); ThreadB b = new ThreadB();
b.setName("B");
b.start(); } }

下面展示synchronized关键字加到非static静态方法上的锁

package Second;

public class Service {

    synchronized public static void printA() {
try {
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "进入printA");
Thread.sleep(3000);
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "离开printA");
} catch (InterruptedException e) {
e.printStackTrace();
}
} synchronized public static void printB() {
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "进入printB");
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "离开printB");
} synchronized public void printC() {
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "进入printC");
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "离开printC");
} }
package Second;

public class ThreadA extends Thread {
private Service service; public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printA();
} }
package Second;

public class ThreadB extends Thread {
private Service service; public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printB();
}
}
package Second;

public class ThreadC extends Thread {

    private Service service;

    public ThreadC(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printC();
}
}

异步的原因是持有不同的锁,一个是对象锁,另外一个是class锁,而class锁可以对类的所有对象实例起作用,下面验证

package Second;

public class Service {

    synchronized public static void printA() {
try {
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "进入printA");
Thread.sleep(3000);
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "离开printA");
} catch (InterruptedException e) {
e.printStackTrace();
}
} synchronized public static void printB() {
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "进入printB");
System.out.println("线程名称为:" + Thread.currentThread().getName() + "在"
+ System.currentTimeMillis() + "离开printB");
} }
package Second;

public class ThreadA extends Thread {
private Service service; public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printA();
}
}
package Second;

public class ThreadB extends Thread {
private Service service; public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printB();
}
}
package Second;

public class Run {

    public static void main(String[] args) {

        Service service1 = new Service();
Service service2 = new Service(); ThreadA a = new ThreadA(service1);
a.setName("A");
a.start(); ThreadB b = new ThreadB(service2);
b.setName("B");
b.start(); } }

同步synchronized(class)代码块的作用其实和synchronized static方法的作用是一样的。下面测试

package Second;

public class Service {

    public static void printA() {
synchronized (Service.class) {
try {
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "进入printA");
Thread.sleep(3000);
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "离开printA");
} catch (InterruptedException e) {
e.printStackTrace();
}
} } public static void printB() {
synchronized (Service.class) {
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "进入printB");
System.out.println("线程名称为:" + Thread.currentThread().getName()
+ "在" + System.currentTimeMillis() + "离开printB");
}
}
}
package Second;

public class ThreadA extends Thread {
private Service service; public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printA();
}
}
package Second;

public class ThreadB extends Thread {
private Service service; public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.printB();
}
}
package Second;

public class Run {

    public static void main(String[] args) {

        Service service1 = new Service();
Service service2 = new Service(); ThreadA a = new ThreadA(service1);
a.setName("A");
a.start(); ThreadB b = new ThreadB(service2);
b.setName("B");
b.start(); } }

数据类型String的常量池特性

package Second;

public class Service {
public static void print(String stringParam) {
try {
synchronized (stringParam) {
while (true) {
System.out.println(Thread.currentThread().getName());
Thread.sleep(1000);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
package Second;

public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.print("AA");
}
}
package Second;

public class ThreadB extends Thread {
private Service service;
public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.print("AA");
}
}
package Second;

public class Run {

    public static void main(String[] args) {

        Service service = new Service();

        ThreadA a = new ThreadA(service);
a.setName("A");
a.start(); ThreadB b = new ThreadB(service);
b.setName("B");
b.start(); } }

出现这样的情况就是因为String的两个值都是AA,两个线程持有相同的锁,所以造成线程B不能执行。这就是String常量池所带来的问题。

因此在大多数情况下,同步synchronized代码块都不使用String作为锁对象,而改用其他的,比如new object()实例化一个object对象,但它并不放入缓存中。

package Second;

public class Service {
public static void print(Object object) {
try {
synchronized (object) {
while (true) {
System.out.println(Thread.currentThread().getName());
Thread.sleep(1000);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
package Second;

public class ThreadA extends Thread {
private Service service; public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.print(new Object());
}
}
package Second;

public class ThreadB extends Thread {
private Service service; public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.print(new Object());
}
}
package Second;

public class Run {

    public static void main(String[] args) {

        Service service = new Service();

        ThreadA a = new ThreadA(service);
a.setName("A");
a.start(); ThreadB b = new ThreadB(service);
b.setName("B");
b.start(); } }

交替打印是因为持有的锁不是同一个

同步synchronized方法无限等待与解决

同步方法容易造成死循环

package Second;

public class Service {
synchronized public void methodA() {
Object object1 = new Object(); System.out.println("methodA begin");
boolean isContinueRun = true;
while (isContinueRun) {
}
System.out.println("methodA end"); } synchronized public void methodB() {
Object object2 = new Object(); System.out.println("methodB begin");
System.out.println("methodB end"); }
}
package Second;

public class ThreadA extends Thread {

    private Service service;

    public ThreadA(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.methodA();
} }
package Second;

public class ThreadB extends Thread {

    private Service service;

    public ThreadB(Service service) {
super();
this.service = service;
} @Override
public void run() {
service.methodB();
} }
package Second;

public class Run {

    public static void main(String[] args) {
Service service = new Service(); ThreadA athread = new ThreadA(service);
athread.start(); ThreadB bthread = new ThreadB(service);
bthread.start();
} }

线程B永远得不到运行的机会,锁死了

package Second;

public class Service {
public void methodA() {
Object object1 = new Object();
synchronized (object1) {
System.out.println("methodA begin");
boolean isContinueRun = true;
while (isContinueRun) {
}
System.out.println("methodA end");
}
} public void methodB() {
Object object2 = new Object();
synchronized (object2) {
System.out.println("methodB begin");
System.out.println("methodB end");
}
}
}

《Java多线程编程核心技术》读后感(五)的更多相关文章

  1. java多线程编程核心技术——第五章总结

    定时器Timer的使用 1.1方法schedule(TimerTask task, Date time)的测试 1.2方法schedule(TimerTask task, Date firstTime ...

  2. Java多线程编程核心技术(三)多线程通信

    线程是操作系统中独立的个体,但这些个体如果不经过特殊的处理就不能成为一个整体.线程间的通信就是成为整体的必用方案之一,可以说,使线程间进行通信后,系统之间的交互性会更强大,在大大提高CPU利用率的同时 ...

  3. Java多线程编程核心技术(二)对象及变量的并发访问

    本文主要介绍Java多线程中的同步,也就是如何在Java语言中写出线程安全的程序,如何在Java语言中解决非线程安全的相关问题.阅读本文应该着重掌握如下技术点: synchronized对象监视器为O ...

  4. Java多线程编程核心技术(一)Java多线程技能

    1.进程和线程 一个程序就是一个进程,而一个程序中的多个任务则被称为线程. 进程是表示资源分配的基本单位,线程是进程中执行运算的最小单位,亦是调度运行的基本单位. 举个例子: 打开你的计算机上的任务管 ...

  5. 《Java多线程编程核心技术》知识梳理

    <Java多线程编程核心技术> @author ergwang https://www.cnblogs.com/ergwang/ 文章末尾附pdf和png下载链接 第1章 Java多线程技 ...

  6. Java多线程编程核心技术---学习分享

    继承Thread类实现多线程 public class MyThread extends Thread { @Override public void run() { super.run(); Sys ...

  7. Java多线程编程核心技术---对象及变量的并发访问(二)

    数据类型String的常量池特性 在JVM中具有String常量池缓存的功能. public class Service { public static void print(String str){ ...

  8. Java多线程编程核心技术

    Java多线程编程核心技术 这本书有利于对Java多线程API的理解,但不容易从中总结规律. JDK文档 1. Thread类 部分源码: public class Thread implements ...

  9. 《Java多线程编程核心技术》推荐

    写这篇博客主要是给猿友们推荐一本书<Java多线程编程核心技术>. 之所以要推荐它,主要因为这本书写得十分通俗易懂,以实例贯穿整本书,使得原本抽象的概念,理解起来不再抽象. 只要你有一点点 ...

  10. 《java多线程编程核心技术》(一)使用多线程

    了解多线程 进程和多线程的概念和线程的优点: 提及多线程技术,不得不提及"进程"这个概念.百度百科对"进程"的解释如下: 进程(Process)是计算机中的程序 ...

随机推荐

  1. 【spring配置】——spring整合Quartz定时器

    第一种:为普通java类中的某个方法配置跑批任务 MethodInvokingJobDetailFactoryBean CronTriggerBean SchedulerFactoryBean 1.定 ...

  2. 我的Java开发学习之旅------>Java经典排序算法之插入排序

    一.算法原理 插入排序法:所谓插入排序法乃是将一个数目插入该占据的位置. 假设我们输入的是 "53,27,36,15,69,  42" 我们从第二个数字开始,这个数字是27,我们的 ...

  3. [容易]Fizz Buzz 问题

    题目来源:http://www.lintcode.com/zh-cn/problem/fizz-buzz/

  4. 《Python Machine Learning》索引

    目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...

  5. Wannafly挑战赛12 A 银行存款 【DP】【DFS】

    链接:https://www.nowcoder.com/acm/contest/79/A 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  6. mini2440 最小根文件系统制作和nfs启动

    mini2440 内核启动后,可以用busybox制作一个简单的根文件系统并用nfs来启动该文件系统 启动mini2440, 按任意键进入uboot,按q键进入uboot命令行: 执行以下命令: se ...

  7. 修改织梦DedeCms文章页默认title的方法

    <title>{dede:field.title/}_{dede:field name='typeid' runphp='yes'}$id=@me;global $dsql;$sql=&q ...

  8. 最短路径问题----Dijkstra算法的解释

    先上图: 现在要找到地点V1到其余各个地点的最短路径(图中数字的单位默认为km.).有一个原则是:永远找最小,确保无更小. 第一步:v1->v1,v1->v2,...v1->v7的距 ...

  9. Git Shell Warning

    Warning: Permanently added 'github.com,192.30.252.120' <RSA> to the list of known hosts. The a ...

  10. CodeForces 547E:Mike and Friends(AC自动机+DFS序+主席树)

    What-The-Fatherland is a strange country! All phone numbers there are strings consisting of lowercas ...