BZOJ3930 [CQOI2015]选数 【容斥】
题目
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
输入格式
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
输出格式
输出一个整数,为所求方案数。
输入样例
2 2 2 4
输出样例
3
提示
样例解释
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
题解
问题转化:
从区间[L,H]中选出N个数,使得gcd为K
由于gcd为K,选出的数一定是K的倍数,令区间内所有的K的倍数除去K后,最小为L,最大为H,则问题转化为
从区间[L,H]中选出N个数,使得gcd为1,即互质
两个数互质的方案数除了用莫比乌斯反演之外,还有一种容斥\(O(nlogn)\)的方法
同样可以搬到这题多个数互质上来
我们令\(f[i]\)表示gcd为i的方案数【不包括全选同一个数,这个单独讨论】
如果区间内有\(x\)个\(i\)的倍数,则粗略估计\(f[i] = x^N - x\)
我们会发现这样算会大了,因为我们同样包括了\(f[2*i]\)、\(f[3*i]\).......
减去即可
可以证明,N以内枚举所有数的倍数复杂度是\(O(nlogn)\)
这样我们就可以\(O(nlogn)\)计算出\(f[1]\)
等等,还没完,如果\(L=1\),说明全选L时gcd为1,也要考虑,此时\(ans+1\)即可
#include<cstdio>
#define LL long long int
const int P = 1000000007;
int N,K,L,H,f[100002];
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = (LL)a * a % P)
if (b & 1) ans = (LL)ans * a % P;
return ans % P;
}
int main(){
scanf("%d%d%d%d",&N,&K,&L,&H);
L = L % K ? L / K + 1 : L / K;
H /= K;
int len = H - L + 1;
for (int i = len; i; i--){
int x = H / i - (L - 1) / i;
f[i] = (qpow(x,N) - x) % P;
for (int j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % P;
}
printf("%d\n",((f[1] + (L == 1)) % P + P) % P);
return 0;
}
BZOJ3930 [CQOI2015]选数 【容斥】的更多相关文章
- (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- BZOJ3930 [CQOI2015]选数【莫比乌斯反演】
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
- 【BZOJ3930】选数
[BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
随机推荐
- Spark Job调优(Part 2)
原文链接:https://wongxingjun.github.io/2016/05/11/Spark-Job%E8%B0%83%E4%BC%98-Part-2/ 这篇文章将会完成Part 1中留下的 ...
- 影响一个UIView是否能正常显示的几个因素
在使用代码实现UIView及其子类的对象的时候,经常会遇到创建的某个view没有显示在屏幕上.以下总结了本人遇到过的几种情况.可能还有些其它的原因也会导致view不能正常显示,限于个人经历有限,无法全 ...
- MySQL 外键 表的查询
自增补充 这是查看怎么创建的表, \G示旋转90度显示表的内容 表的自增的关键是** AUTO_INCREMENT=3**,在表中添加数据后,这个会自动改变,通过alert可以改变这个默认值 mysq ...
- C08 C语言预处理命令
目录 宏定义 文件包含 条件编译 预处理命令 C语言的预处理:在编译之前进行的处理,不进行编译. C语言的预处理功能有: 宏定义 文件包含 条件编译 预处理命令以符号“#”开头.. 宏定义 不带参数的 ...
- css实现页面文字不换行、自动换行、强制换行
强制不换行 div{ white-space:nowrap; } 自动换行 div{ word-wrap: break-word; word-break: normal; } 强制英文单词断行 div ...
- pandas处理大文本数据
当数据文件是百万级数据时,设置chunksize来分批次处理数据 案例:美国总统竞选时的数据分析 读取数据 import numpy as np import pandas as pdfrom pan ...
- 编译-LAMP基于fastcgi
前言 最近没更新新篇幅了,今天就来点干活,过多的也不说了下面着手干!干!干! 准备环境 centos7.5 apr-1.6.3.tar.gz apr-util-1.6.1.tar.gz h ...
- ccf 201712-3 Crontab(Python实现)
一.原题 问题描述 试题编号: 201712-3 试题名称: Crontab 时间限制: 10.0s 内存限制: 256.0MB 问题描述: 样例输入 3 201711170032 201711222 ...
- spartan6不能直接把时钟连到IO上
1.问题的提出:spartan6中不允许时钟信号直接连到IO口上面? 2.解决办法: ODDR2的使用 ODDR2Primitive: Double Data Rate Output D Flip-F ...
- 使用laravel框架的eloquent\DB模型连接多个数据库
1.配置.env文件 DB_HOST_TRAILER=127.0.0.1DB_PORT_TRAILER=3306DB_DATABASE_TRAILER=htms_trailerDB_USERNAME_ ...