题目

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

输入格式

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

输出格式

输出一个整数,为所求方案数。

输入样例

2 2 2 4

输出样例

3

提示

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5

题解

问题转化:

从区间[L,H]中选出N个数,使得gcd为K

由于gcd为K,选出的数一定是K的倍数,令区间内所有的K的倍数除去K后,最小为L,最大为H,则问题转化为

从区间[L,H]中选出N个数,使得gcd为1,即互质

两个数互质的方案数除了用莫比乌斯反演之外,还有一种容斥\(O(nlogn)\)的方法

同样可以搬到这题多个数互质上来

我们令\(f[i]\)表示gcd为i的方案数【不包括全选同一个数,这个单独讨论】

如果区间内有\(x\)个\(i\)的倍数,则粗略估计\(f[i] = x^N - x\)

我们会发现这样算会大了,因为我们同样包括了\(f[2*i]\)、\(f[3*i]\).......

减去即可

可以证明,N以内枚举所有数的倍数复杂度是\(O(nlogn)\)

这样我们就可以\(O(nlogn)\)计算出\(f[1]\)

等等,还没完,如果\(L=1\),说明全选L时gcd为1,也要考虑,此时\(ans+1\)即可

#include<cstdio>
#define LL long long int
const int P = 1000000007;
int N,K,L,H,f[100002];
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = (LL)a * a % P)
if (b & 1) ans = (LL)ans * a % P;
return ans % P;
}
int main(){
scanf("%d%d%d%d",&N,&K,&L,&H);
L = L % K ? L / K + 1 : L / K;
H /= K;
int len = H - L + 1;
for (int i = len; i; i--){
int x = H / i - (L - 1) / i;
f[i] = (qpow(x,N) - x) % P;
for (int j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % P;
}
printf("%d\n",((f[1] + (L == 1)) % P + P) % P);
return 0;
}

BZOJ3930 [CQOI2015]选数 【容斥】的更多相关文章

  1. (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  2. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  3. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  4. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. 《实战Python网络爬虫》- 感想

    端午节假期过了,之前一直在做出行准备,后面旅游完又休息了一下,最近才恢复状态. 端午假期最后一天收到一个快递,回去打开,发现是微信抽奖中的一本书,黄永祥的<实战Python网络爬虫>. 去 ...

  2. 第三章 DOM的基本

    节点分为不同的类型:元素节点.属性节点和文本节点 getElementById()方法 这个方法将返回一个与那个有着给定id属性值的元素节点相对应的对象.注意大小写.该方法只有一个参数.这个参数也就是 ...

  3. stixel-world跑在kitti数据集

    kitti数据集中每一帧的Calibration不同,每一帧都存储了4个相机的Calibration http://ww.cvlibs.net/publications/Geiger2013IJRR. ...

  4. MAC OSXU盘会挂载目录

    当U盘接到系统后,你可以在Terminal里输入df -lh.这时,硬盘的使用和分区情况会输出,你在Mounted on 这一列数据中可以找到你的U盘或新添加的硬盘的挂载路径.

  5. js类型判别大合集

    1.typeof number,string,boolean,undefined,symbol,object,function 对象中除了函数为function,其他对象都判别为object, 缺陷: ...

  6. javaweb基础(4)_http协议

    一.什么是HTTP协议 HTTP是hypertext transfer protocol(超文本传输协议)的简写,它是TCP/IP协议的一个应用层协议,用于定义WEB浏览器与WEB服务器之间交换数据的 ...

  7. C#传递数组参数

    在C#中,可以将数组作为参数传递给方法,同时方法可以更改数组元素的值. 一.将一维数组作为参数传递给方法 using System;using System.Collections.Generic;u ...

  8. 多线程之volatile关键字(五)

    开始全文之前,先铺垫一下jvm基础知识以及线程栈: JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolea ...

  9. Linux学习-编译前的任务:认识核心与取得核心原始码

    什么是核心 (Kernel) Kernel 其实核心就是系统上面的一个文件而已, 这个文件包含了驱动主机各项硬 件的侦测程序与驱动模块. 核心文件通常被放置成 /boot/vmlinuz-xxx ,不 ...

  10. MySQL 的MAC终端一些指令总结

    开启MySQL服务 sudo /usr/local/mysql/support-files/mysql.server start 关闭MySQL服务 udo /usr/local/mysql/supp ...