题目链接

  根号算法真的是博大精深啊……明明是暴力但复杂度就是能过

  这也太强了吧!!!

  预处理出p<=sqrt(n)的所有情况,耗时n根n

  查询:

  如果p<=根n,O1查表

  如果p>=根n,因为只有小于根n个数对答案有贡献,所以枚举,耗时根n

  修改:

  因为单点修改,直接修改1~size所有的情况,耗时根n

  然后这个暴力一般的暴力就卡过了!!!!!

  这也  太强  了   吧!!!!

  

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cmath>
#define maxn 160000
#define sqtn 400
using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long s[sqtn][maxn],q[maxn];
int sqt;
inline void update(int i,int v){
for(int j=;j<=sqt;++j) s[j][i%j]=s[j][i%j]-q[i]+v;
q[i]=v;
} int main(){
int n=read(),m=read();
for(int i=;i<=n;++i) q[i]=read();
sqt=sqrt(n);
for(int i=;i<=n;++i)
for(int j=;j<=sqt;++j) s[j][i%j]+=q[i];
for(int i=;i<=m;++i){
char c[];int x,y;
scanf("%s%d%d",c,&x,&y);
if(c[]=='A'){
if(x<=sqt) printf("%lld\n",s[x][y]);
else{
long long ans=;
for(int j=y;j<=n;j+=x) ans+=q[j];
printf("%lld\n",ans);
}
}
else update(x,y);
}
return ;
}

【Luogu】P3396哈希冲突(根号算法)的更多相关文章

  1. luogu P3396 哈希冲突(分块?)

    我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案.然后维护就炸了. 先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x) ...

  2. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  3. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  4. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  5. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  6. P 3396 哈希冲突 根号分治

    Link 据说这是一道论文题????.具体论文好像是 集训队论文<根号算法--不只是分块> 根号分治的裸题. 首先我们考虑暴力怎么打. 先预处理出每个模数的答案,之后再 O(1) 的回答, ...

  7. luogu 3396 哈希冲突 奇怪的根号

    这个题嘛开始一看实在想不出来有什么数据结构/算法可以乱搞,于是果断写了个朴素n方暴力,然后就发现luogu竟然有91分 这数据啊,也是醉了.. 想着优化优化能不能暴力卡过最后一个T掉的点,然鹅发现无耶 ...

  8. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  9. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

随机推荐

  1. python爬虫之路——初识基本页面构造原理

    通过chrome浏览器的使用简单介绍网页构成 360浏览器使用右键审查元素,Chrome浏览器使用右键检查,都可查看网页代码. 网页代码有两部分:HTML文件和CSS样式.其中有<script& ...

  2. UVA 10954 Add All 全部相加 (Huffman编码)

    题意:给你n个数的集合,每次选两个删除,把它们的和放回集合,直到集合的数只剩下一个,每次操作的开销是那两个数的和,求最小开销. Huffman编码.Huffman编码对于着一颗二叉树,这里的数对应着单 ...

  3. java sql database相关收集

    1 java prepareStatement http://www.importnew.com/5006.html 2 java ENGINE=InnoDB的使用 http://www.cnblog ...

  4. SQLServer锁原理和锁的类型

    1.锁的用途 为了避免同时争夺数据库资源,将数据库加锁,只有拿到钥匙的用户才能使用: 2.锁的粒度 行锁(Row)--->页锁(Page)--->区锁(Partition 8个页)---- ...

  5. Html5的等学习

    看了w3c感觉是说明文档,没有详细的说明,然后就去看其他的 html5其实就是在html的基础上做了一些改变,感觉html5的推广还是需要时间的,因为习惯问题,虽然html5有很多很方便的标签如art ...

  6. JQuery EasyUI学习记录(三)

    1.jQuery EasyUI messager使用方式 1.1 alert方法 $(function(){ //1.alert方法---提示框 $.messager.alert("标题&q ...

  7. 课下作业04-2String的使用方法

    1.动手动脑之String.equals()方法public class StringEquals { public static void main(String[] args) { String ...

  8. Java中List集合排序的方法 比较器的使用 根据学生对象数学 语文 英语成绩总和进行sort排序

    package com.swift; import java.util.ArrayList; import java.util.Collections; import java.util.Compar ...

  9. bash编程之case语句,函数

    bash脚本编程:之case语句   条件测试: 0: 成功 1-255: 失败   命令: [ expression ] [[ expression ]] test expression   exP ...

  10. 头文件string与string.h的区别

    在C++中,#include<iostream>与#include<iostream.h>的区别,前者要使用更新的编译器(其实大部分编译器多比较前卫了,出了有些搞嵌入式的用变态 ...