链接:http://uva.onlinejudge.org/external/107/10733.pdf

题意: N 种颜色可以涂成多少种立方体~

思路: 使正六面体保持不变的运动群总共有:

1.不变置换(1)(2)(3)(4)(5)(6), 共1个;

2.沿对面中心轴旋转 90度, 270度 (1)(2345)(6), (1)(5432)(6) 同类共 6个;

3.沿对面中心轴旋转 180度 (1)(24)(35)(6), 同类共 3个;

4.沿对角线轴旋转 120度, 240度 (152)(346), (251)(643) 同类共 8个;

5.沿对边中点轴旋转 180度 (16)(25)(43) 同类共 6个;

 #include <cstdio>
#include <iostream>
using namespace std;
int N, M;
typedef long long LL;
LL P_M(int a, int b )
{
LL res=,t=a;
while(b){
if(b&)res*=t;
t*=t;
b>>=;
}
return res;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF&&n)
{
LL ans=;
ans += P_M(n,);
ans += *P_M(n,);
ans += *P_M(n,);
ans += *P_M(n,);
ans /= ;
printf("%lld\n",ans); }
}

uva 10733 The Colored Cubes<polya定理>的更多相关文章

  1. UVA 10733 - The Colored Cubes(Ploya)

    UVA 10733 - The Colored Cubes 题目链接 题意:一个立方体.n种颜色,问能涂成多少不同立方体 思路:Ploya求解,正方体相应24种不同旋转一一计算出循环个数就可以.和 U ...

  2. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  3. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

  4. UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)

    题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯. 析: ...

  5. 项链与手镯Uva 10294——Polya定理

    题意 项链和手镯都是由若干珠子串成的环形首饰,区别在于手环可以翻转,但项链不可以. 输入整数 $n$ 和 $t$,输出用 $t$ 中颜色 $n$ 颗珠子能制作成的项链和手镯的个数.($1\leq n ...

  6. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  7. POJ2409 Let it Bead(Polya定理)

    Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6443   Accepted: 4315 Descr ...

  8. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  9. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

随机推荐

  1. C#.net制作验证码(英文与数字组成的4位随机数),以及MD5值的使用

    原文发布时间为:2008-09-22 -- 来源于本人的百度文章 [由搬家工具导入] 参考资料:http://www.cnblogs.com/gwazy/articles/139510.html 三个 ...

  2. Emmet插件的快捷键

    Emmet插件的快捷键 html:5+tab键,可以生成html标签.!+tab键,也可以生成html标签.============================================== ...

  3. 美图秀秀web开发文档

    Xiuxiu 组件 import React, { Component } from 'react'; class XiuXiu extends Component { componentDidMou ...

  4. ZSTU 4241 圣杯战争(ST表+二分)

    题目链接  ZSTU 4241 问题转化为有很多区间,现在每次给定一个区间求这个区间和之前所有区间中的某一个的交集的最大长度. 强制在线. 首先我们把所有的区间预处理出来. 然后去重(那些被包含的小区 ...

  5. 如何通过ShareSDK的 Unity3D快速接入Android/iOS分享与授权

    Unity3D是由Unity Technologies开发的一个让玩家轻松创建诸如三维视频游戏.建筑可视化.实时三维动画等类型互动内容的多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎:在游戏 ...

  6. commons-lang3-RandomUtils

    随机工具类   RandomUtils nextBoolean() 返回一个随机boolean值 nextBytes(int count) 返回一个指定大小的随机byte数组 nextDouble() ...

  7. 解决mac osx下pip安装ipython权限的问题

    1 pip install ipython --user -U 下面是pip install gevent的错误提示, 又是 Operation not permitted …   1 2 3 4 5 ...

  8. 【android】getDimension()、getDimensionPixelOffset()和getDimensionPixelSize()区别详解

    在自定义控件中使用自定义属性时,经常需要使用java代码获取在xml中定义的尺寸,相关有以下三个函数 getDimension() getDimensionPixelOffset() getDimen ...

  9. margin: 0 auto; 元素水平居中布局无效

    失效原因: 要给居中的元素一个宽度,否则无效. 该元素一定不能浮动或绝对定位,否则无效. 在HTML中使用<center></center>标签,需考虑好整体构架,否者全部元素 ...

  10. 【工作笔记】Git与Github经常使用使用方法

    Git安装 http://www.liaoxuefeng.com/ Git配置用户信息: git config –global user.name "SCOTT" git conf ...