链接:http://uva.onlinejudge.org/external/107/10733.pdf

题意: N 种颜色可以涂成多少种立方体~

思路: 使正六面体保持不变的运动群总共有:

1.不变置换(1)(2)(3)(4)(5)(6), 共1个;

2.沿对面中心轴旋转 90度, 270度 (1)(2345)(6), (1)(5432)(6) 同类共 6个;

3.沿对面中心轴旋转 180度 (1)(24)(35)(6), 同类共 3个;

4.沿对角线轴旋转 120度, 240度 (152)(346), (251)(643) 同类共 8个;

5.沿对边中点轴旋转 180度 (16)(25)(43) 同类共 6个;

 #include <cstdio>
#include <iostream>
using namespace std;
int N, M;
typedef long long LL;
LL P_M(int a, int b )
{
LL res=,t=a;
while(b){
if(b&)res*=t;
t*=t;
b>>=;
}
return res;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF&&n)
{
LL ans=;
ans += P_M(n,);
ans += *P_M(n,);
ans += *P_M(n,);
ans += *P_M(n,);
ans /= ;
printf("%lld\n",ans); }
}

uva 10733 The Colored Cubes<polya定理>的更多相关文章

  1. UVA 10733 - The Colored Cubes(Ploya)

    UVA 10733 - The Colored Cubes 题目链接 题意:一个立方体.n种颜色,问能涂成多少不同立方体 思路:Ploya求解,正方体相应24种不同旋转一一计算出循环个数就可以.和 U ...

  2. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  3. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

  4. UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)

    题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯. 析: ...

  5. 项链与手镯Uva 10294——Polya定理

    题意 项链和手镯都是由若干珠子串成的环形首饰,区别在于手环可以翻转,但项链不可以. 输入整数 $n$ 和 $t$,输出用 $t$ 中颜色 $n$ 颗珠子能制作成的项链和手镯的个数.($1\leq n ...

  6. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  7. POJ2409 Let it Bead(Polya定理)

    Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6443   Accepted: 4315 Descr ...

  8. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  9. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

随机推荐

  1. 使用 PHPMailer 发邮件

    /** * 发邮件 * * @param array $receiver 接收人信息 * @param array $attachment_info 附件信息 * @param string $is_ ...

  2. Servlet 2.4 规范之第六篇:响应

    响应对象封装了服务端返回给客户端的所有信息.在HTTP协议中,这些信息通过HTTP头和消息体传送. SRV.5.1    缓冲 出于效率考量,servlet容器可以缓冲输出数据,但这并非强制要求.常见 ...

  3. LeetCode OJ--Permutation Sequence *

    求第k个排列. 刚开始按照一个排列一个排列的求,超时. 于是演算了一下,发下有数学规律,其实就是康托解码. 康托展开:全排列到一个自然数的双射 X=an*(n-1)!+an-1*(n-2)!+...+ ...

  4. Integration testing

    Integration testing 集成测试用来确保app的不同模块之间可以正确的一起工作.ASP.NET Core提供单元测试框架和内建的测试网络服务来支持集成测试,并且测试网络服务不需要网络开 ...

  5. vue生命周期回调方法

    最近在用vue开发一个商品列表页,因需要根据请求回的字段是否有内容来显示隐藏该字段, 但因为vue异步加载导致显示隐藏方法不起作业(主要是判断条件取不到页面渲染内容),围观了vue生命周期后发现upd ...

  6. SPOJ GSS系列(数据结构维护技巧入门)

    题目链接 GSS $GSS1$ 对于每个询问$l$, $r$,查询$a_{l}$, $a_{l+1}$, $a_{l+2}$, ..., $a_{r}$这个序列的最大字段和. 建立线段树,每个节点维护 ...

  7. 详解Java中的字符串

    字符串常量池详解 在深入学习字符串类之前, 我们先搞懂JVM是怎样处理新生字符串的. 当你知道字符串的初始化细节后, 再去写String s = "hello"或String s ...

  8. 某考试 T3 bitboard

                    bitboardDiscription    天才发明家小K 制造了一块比特板.板子上有2^n个比特元,编号为0 ∼ 2^n−1.每个比特元

  9. DNA的分子结构

    DNA是由两条链组成的, 这两条链按反相平行的方式盘旋成双螺旋结构 DNA分子中的脱氧核糖和磷酸交替连接, 排列在外侧, 构成基本骨架; 碱基排列在内侧. 两条链上的碱基通过氢键连接成碱基对, 并且其 ...

  10. Jackson对泛型的序列化和反序列化方法汇总

    说明:Jackson对于简单泛型是可以正常操作的,但是如果对于太过于复杂的泛型类有时会不成功.目前还在找着更合适的Json库.不过这一点在dotnet原生方案JavaScriptSerializer可 ...