这里是枚举每一个最大公约数p,那么最后求的是f(n) = sigma(p*phi(n/p))    phi()为欧拉函数

这里可以试着算一下,然后会发现这个是积性函数的

那么只要考虑每一类质数分开算,最后乘在一起就行了

而对于f(p^k) p为素数的求解可以这样考虑

对于前一个f(p^(k-1)) , 那么f(p^k)相当于把f(p^(k-1)) 中的所有情况都乘上了p ,  然后加上新产生的gcd()=1的情况,这个利用过程中的欧拉函数定理求解

phi(n) = (p1-1)*p1^(k1-1)....+(pn-1)*pn^(kn-1)

这里只能在只含有唯一素数因子的情况下计算,因为如果有别的素数因子,新产生的gcd除了1以外,还有当前乘上的因子p之外的素数因子考虑不到,会使答案变小,

这里大概想想就可以知道了

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <ctime>
#include <cstdlib>
using namespace std;
#define ll long long
#define N 100000
int prime[N+] , tot , fai[N+];
bool check[N+]; void get_prime()
{
for(int i= ; i<=N ; i++){
if(!check[i]){
prime[tot++] = i;
fai[i] = i-;
}
for(int j= ; j<tot ; j++){
if((ll)prime[j]*i>N) break;
check[prime[j]*i] = true;
if(i%prime[j]==){
fai[i*prime[j]] = fai[i]*prime[j];
break;
}else fai[i*prime[j]] = fai[i]*(prime[j]-);
}
}
} void solve(int n)
{
/*这里求出一个gcd(i,n)=1的个数,就是求n的欧拉函数phi(n)
phi(n) = (p1-1)*p1^(k1-1)....+(pn-1)*pn^(kn-1)
*/
ll ret = ;
for(int i= ; i<tot ; i++){
if(prime[i]>n) break;
int cnt = ;
ll phi = , tmp = ;
while(n%prime[i]==){
if(!cnt) phi = prime[i]-;
else phi = phi*prime[i];
tmp = tmp*prime[i]+phi;
cnt++;
n/=prime[i];
}
ret = ret*tmp;
}
if(n>){
ret = ret*(*(ll)n-); //这里的n可能是超过1e9的整数,*2有可能超int,要注意
// if(ret<0) cout<<"last "<<n<<" "<<(2*n-1)<<" "<<ret<<endl;
}
printf("%I64d\n" , ret);
}
int main() {
// freopen("a.in" , "r" , stdin);
// freopen("out.txt" , "w" , stdout);
get_prime();
int n;
while(~scanf("%d" , &n)){
solve(n);
}
}

POJ 2480 求每一个数对于n的最大公约数的和的更多相关文章

  1. POJ 2299 求逆序对个数 归并排序 Or数据结构

    题意: 求逆序对个数 没有重复数字 线段树实现: 离散化. 单点修改,区间求和 // by SiriusRen #include <cstdio> #include <cstring ...

  2. POJ 3978 Primes(求范围素数个数)

    POJ 3978 Primes(求范围素数个数) id=3978">http://poj.org/problem? id=3978 题意: 给你一个区间范围A和B,要你求出[A,B]内 ...

  3. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  4. poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数

    题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...

  5. 给定两个数组,这两个数组是排序好的,让你求这两个数组合到一起之后第K大的数。

    题目:给定两个数组,这两个数组是排序好的,让你求这两个数组合到一起之后第K大的数. 解题思路: 首先取得数组a的中位数a[aMid],然后在b中二分查找a[aMid],得到b[bMid],b[bSt] ...

  6. PAT甲题题解-1013. Battle Over Cities (25)-求联通分支个数

    题目就是求联通分支个数删除一个点,剩下联通分支个数为cnt,那么需要建立cnt-1边才能把这cnt个联通分支个数求出来怎么求联通分支个数呢可以用并查集,但并查集的话复杂度是O(m*logn*k)我这里 ...

  7. 利用DFS求联通块个数

    /*572 - Oil Deposits ---DFS求联通块个数:从每个@出发遍历它周围的@.每次访问一个格子就给它一个联通编号,在访问之前,先检查他是否 ---已有编号,从而避免了一个格子重复访问 ...

  8. UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】

    Road Networks Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Stat ...

  9. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

随机推荐

  1. jQuery动态加载脚本 $.getScript();

    jQuery.getScript("/path/to/myscript.js", function(data, status, jqxhr) {       /*          ...

  2. Bootstrap的粗体和斜体

    一.粗体 粗体就是给文本加粗,在普通的元素中我们一般通过font-weight设置为bold关键词给文本加粗. 在Bootstrap中,可以使用<b>和<strong>标签让文 ...

  3. 开机使用root用户登录

    有的fedora版本默认不支持开机以root用户登录,这是出于安全机制的考虑,可以通过设置实现开机root用户登录 步骤: 1.修改.etc/pam.d/gdm文件,注释掉auth  pam_succ ...

  4. hiho_1062_最近公共祖先

    题目大意 给出一棵家谱树,树中的节点都有一个名字,保证每个名字都是唯一的,然后进行若干次查询,找出两个名字的最近公共祖先. 分析 数据量较小,对于每次查询都进行如下操作: 先找出person1到达根节 ...

  5. SlideSwitch

    //SlideSwitch.java package com.example.hellojni; import android.content.Context; import android.cont ...

  6. Selenium处理时间控件

    Web网页的时间控件往往嵌入到一个iframe里,抓取页面元素时,总是失败? 不要慌,WebDriver已经有相应的处理方法了. driver.switchTo().frame(driver.find ...

  7. 在腾讯云上创建您的SQL Cluster(2)

    版权声明:本文由李斯达原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/248 来源:腾云阁 https://www.qclo ...

  8. 在IIS7.5打开网页的时候,提示: HTTP 错误 500.0 - Internal Server Error 调用 LoadLibraryEx 失败,在 ISAPI 筛选器 "C:\Windows\Microsoft.NET\Framework\v4.0.30319\\aspnet_filter.dll" 上。解决方法

  9. golang为LigerUI编写简易版本web服务器

    package main import ( "io/ioutil" "log" "net/http" "os" ) va ...

  10. Gradle 教程:第一部分,安装【翻译】

    原文地址:http://rominirani.com/2014/07/28/gradle-tutorial-part-1-installation-setup/ 在这篇教程里,我们将主要讲解如何在我们 ...