在讲什么是深浅拷贝之前,我们先来看这样一个现象:

a = ['scolia', 123, [], ]
b = a[:]
b[2].append(666)
print a
print b

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbYAAABCCAIAAAC0H2ScAAAHyUlEQVR4nO2dy5WzOBBGFZZCmERaYdARjHZezWTAtrV3FCyGDJwEs+ClV4GMAfO37z19+rRpIZVK0kdJCKM6AAAQUO82AADguiCRAAAiWyWyvWt9b18tvTGqUqp2r+aT4/oWnoOr1Q5+2KWsh9XLzmzMuqtL0ryDUj/v3qN2dchxveXMfrgrWYnsu/K3Ut/KNMKJD6tv1quxM+Mp6ts80WKbGri9a1WFZXk2Dy0RW7iVq43JktYJEhs3tI5xXWtvZSduNGxsDslpy8582K/VUVSS5nz8uq+yb496WL1Xbk/V4iI5H05GIlt70/bRdV3XNUYWfi9ZNyTuG76968Ue0Nq7998N3cUbJK4eL8iNHW12Y3aJhaW8bOGBFLbOwHzpnmpxWHX8MKG9a5UdEic5M2zBY8/qumdDpPf3qHxNw1rs6cPjcj6ejET6wZdnVtKu8Uy2UCKjfDZ0F/+U+PTAjxvn2q9beByP0tYZEqdh3UHVCcMEVytTm0yseo4zt5Wy2bZnQ6S396jV3iKluVrOZ5CRyHJTnIlq7k9+h4/G9bHet1L1z/BH/zOPWGtvSn3PEd8wj+61YFi7idP0CZNI1oYJfAudqZSqjanGfM6wMCBz1s224eJUkCblmY4SXLozEjmvjYTR31D66BM3HJTPisvq3R5OAPvc9E2r+h97U+qmdaV0/aWrwWNTcbPBiVfjNDl7whb8EWoxLDhMCzWZdi/yRlj3xqjKmFqpb2NquU0bE/TDpGdKZaV9I3VImmZaleqvWNmaRi246o1s7z0/57gbrIzubQr7kkR2rvZWtdLRO88EnU3H6vSxGqvUHx8DpTkGTNN0XXYe7e6xssQWVsaFOR9pYcgUAE6F9iLiL66laSLKJVK6dC+Ek2npjVGVys4Vlsoa8nFmlD/fY6r+6RozjIH+tzQnyHq1JMbP5CPUYiHnfCsnE+qg7s70Fa9d27h2yatxP8wdCctK7UnNzvaxagxZxLlXLhAWvLHUe0/OOaJwdD/NykS7ax+LWS/7fVQxV8th9sLQXRrV3vCbcWZ5tGTyOc7CnK+q5ErYy8RyGp9HaevEq2OSKETRTVS6JEBJLBOXFUWaQek/w0f/d2Tkss3JlTiOuwtkdA5MyksX8gmjaW3v4T3rBa8+1ZGkf6UNWtKC4cHMWmruMrPSe8/NWazU8uh+mrXbNWu3Pr2ZrBhfqGyLukboE9mrd5CmtbepzmvrcZGF6XX4EAtzeOo2SNt4tZwnpGmamLLWyV665ziuN3W6wRXXay49M1BzZ4Vltfev8erVR1Vzzq5WO0tkak8nt2CSc7BuHp210MrLfq6MjTpY6tU055KyyqNIv48NFmZGylzTdC1V8Ea30HvPzDmlcHQ/zfKmn9UZzTSTHU9Jp4euDsO9MaVp5guIaYL1gszahJ/m37/my853brkta2Gf4Kb1uEJxoIWTCoQEq0LTTKrJrUUub7daa53cDdZ49S27ecgv3VsA8vyTnJUPIYNVWteNUZupjaqU/ntcrRt+ewtw8Vp24NU4jVALvwXztZjWRusvXXm7xKqcN/y1yDCfnJ+dqV33cM4rK27TxtrGBv0w7JmSzfl16rDp0/4z5pZpxHwL5tLEOQu997Sc85e9ktH9NK8/XZOGxAG5ye/JTBZKYebbLdyXM/eg/cH73V5mx7qvziJl1vbYrfFr9kIeNbqPewCxme8oXYPh1mcQdV7LQvhMkp5ZwrSEt8vzEX88x41untEGABBBIgEARJBIAAARJBIAQASJBAAQQSIBAESQSAAAEVEinVFKKaW0bftPb9w++N7S84T+2URrdZ+H9zRlfAQA3ooskTb8TvEXpGBiVIBIAFYVcJ/S9yX0zyu01rq1IwDwHkoksrV6R4lKBbG1XwvZv1S6M15ZU4w2ifQYCm6I2yKJLIkIhRgRiQS4LoVR5I6cNWse5M8TqEmInVHK/PjBaWv1k1YF/nFmnHCPtSs5MhmGRAJcld8rkXFZ0t8bjVqMskuOeP9CIgGuynaJnCepQSyWnVvqMOLy1CiO9fLZbCWvfKFcObOpJM8/zihjA5tLjnjmIJEAV2WzROaWFPUsB8OXePZaFGhSemJ0ZPr4eryZySEfzr0URTozXQRaq7X9r+CIZwESCXBdXplo9xGg9lb4JO1bnORmp70bb6KkFoZfr2mkTTpPa2Q40Q5q91NwhLVIgD+C7VHk+H8/Zpz+sjtEkUu3UAoVLUjmq1RrbXC7RryXImdtg7l6FCGWHJntQiIBrspmiUx30OS2U4drkd45niKlEeMQnn59aWlrdsFOyThn77O/Iz6tQ9kWo9A/U83SddmFI+NxJBLgqhQ+XXMp9t2nuTFnnq4B+AR4RhsAQASJBAAQQSIBAESQSAAAESQSAEAEiQQAEEEiAQBEkEgAABFezLARto4DfAK8mGEjvJgB4BPgxQwbv1OIFzMAfAK/91vHeTEDALzM75XIuCxezAAAT8OLGXgxAwCI8GIGKeFa1ryYAeAD4MUMklVrWfNiBoAPgBczjAl5MQMAJPBihqQOvJgBAEZ4McPGnHm6BuAT4BltAAARJBIAQASJBAAQQSIBAESQSAAAESQSAEAEiQQAEEEiAQBEkEgAABEkEgBABIkEABBBIgEARJBIAAARJBIAQASJBAAQ+R8cU6FxzSEKzQAAAABJRU5ErkJggg==" alt="" />

  为什么我只对b进行修改,却影响到了a呢?看过我在之前的文章中就说过:序列中保存的都是内存的引用。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwQAAAF/CAIAAAB445meAAAgAElEQVR4nO2d+3/U1L6G/ZecVmilYOFAuUhBGOHQbVGLggIfUBiwOAhqD4JyU6dbQBAQERBxy2DBKqCggFQoMFsuFixSgQGroFBu5WbOD2lnMpmVZGXNyndW0vf9YW9pnyZvVtYkT9ek7QMaX9ra2jhJt3AymfRoy+hsDDrTwOhMA6MzDYzONDA608A2nR/wYn9deUApa6AzTQ10pqmBzjQ10JmmBjrT1IAM5RNGZxoYnWlgdKaB0ZkGRmcaOGCdH2jLd5LJZL4ruA460wSdaYLONEFnmqAzTQLWGStDIjA608DoTAOjMw2MzjQwOtPAAesMGRKB0ZkGRmcaGJ1pYHSmgdGZBg5YZ8iQCIzONDA608DoTAOjMw2MzjRwwDpDhkRgdKaB0ZkGRmcaGJ1pYHSmgQPWGTIkAqMzDYzONDA608DoTAOjMw0csM6QIREYnWlgdKaB0ZkGRmcaGJ1p4IB1hgyJwOhMA6MzDYzONDA608DoTAMHrLNrGYpGoyEEQRCPE41GxS5qNpev/MLoTAOjMw0csM6uZSjfV0gEQbpKxC5qNpev/MLoTAOjMw0csM6CMsS/bwRBELeBDKGzMIzONHDAOkOGEARRLpAhdBaG0ZkGDlhnyBCCIMoFMoTOwjA608AB6wwZQhBEuUCG0FkYRmcaOGCdIUMIgigXyBA6C8PoTAMHrPMDbS4DGUIQxOvo1xmbC1EymXR77cp70Jkm6EyTgHXGyhCCIMoFK0PoLAyjMw0csM6QIQRBlAtkCJ2FYXSmgQPWOS8yFI+EQqFQKBLXErGw/r+hUCSewSRi4XAsoX/eciv65xKxMOsXtoVjCf2TFluw27aphrG1IZlfnkZTzZjby/wci5W9U/amLRKPhByIjK1Z7pPrSG1rZNPxSNY8kRl9n9lDnjXqjKMzx2JSpual1d6ZH099ZYzVLf1lzOrZR8DRjbGl9AYyTrvdPkPip0v/ahsgYBdiyhroTFMDnWlq+FGGUpfN9O3AdNvPuN6mZCbrDtWJGe/biVgk40LO2JQpAjJk5M33rvTm4hFLmzB3YXeTvFO7AqmP2t7RrO5rNkPIcaSZt1HTZ7PVgFVSqhl17DJ7JDu7ONz3M47DYtbZyWg8wjSlVC3no7WcBJknSqBbxgbMMmT5WnPnvxmBDKGzMIzONHDAOtOvDGVeLy0u35lQIpF5V2VdiRPxSOe9krXSYvUdP+M2bPwy413XfpEmVctCLCJx0yci8Wy2c5VM3k4dRSfz4J0XjhgDaztw1kdq+opwLM5qmhbfzGLyF4nSymMlQ9YfyI7Y6gvr6PWdcak7vwxxzQarDUCGBGF0poHRmQYOWGc6GeJbfdAvpaklH8bVlHFXsLirOFyH3a4M8XHW38cbN5XSMwNkEDt5O83yStslgnjE8q2Y9Dqd492b90gNXbKbGz/iZA1u/M0q6fe9HGUoEQuHIjFr/eyEnFZfnFTBeFa5JqvUlaGsQcfbZDnD6EwDozMNHLDO+V8ZYi7khBxlqOMaHI4ljBTrv8xfafHPzIczEmmocxfpzxmUIL23UDiWcLK4DEWImJBsGZKwU/vxzvqcxT0yZKFpFiPKfaSd/9HxBSYBSi16mTaQpXduZSh7KI0H6fDMkNXTQqY3ufhXX4xfyDqD8UgoEks/W2enHBJXhkyHiZUhGTA608DoTAMHrHO+ZSh7dSARC4fC4bCTDBk3ZbMyZHQmu0u6psUjhiKpu0LHfSMSiXQWMjzWbfh/fR/pm5GpUjiWYKyXZI5FhgzJ2mn2Piwe2TI/aaUxPyomQ9ZH2iFgqUOwkFmH1Qd3MpR+uixlQIlYOBzOWhnKcrbOL8naH/ujrjqFO72WKUPmtTXLB8y5ZIgndh4DGRKE0ZkGRmcaOGCd8yJDRl3puH6nHwGJRyJx8/s/pq9nyJDdypDFWxPWN4iOJZKOpo6LNB3fupvfcGIUN6ualnnghmeGZO004+j14zIsgqQ/F4+E0jpgHgjmxhhDmOlpTkea3kcolH2uLG72xg127jUhLCGdyx/xWCxh/05dmk+JetZWjP92TOoEZBwOy2bS3ySEYwnTKprpBNlJo2GHHN0YXIZD420yERidaWB0poED1jkvzwyZ7qfhsPn7avcyZHcdNr8ZxFomytoI+30h1kcSsUgswXj6xultMvP31ukbocSdpr4087bbsfhluMF2LD5YPApjc49kjDn/kXYQoezzY3ybLGPrqRWx1KpfJO7KhkzHkPEOld3xhWOxSOeYsZ+rytie3dnLTHolkglmPtht+gYg04YEVoY432XMwIxbs33PEitDmUFnGhidaeCAdc7322TsJ1K8WxkyJGt9IkMVMirZ3CPTZiUsQ6kvyZQhKTtN3/vNn8leWmKtjdhLGf/bZJabTcTCoayHiizKpI69Q4jCbt/70UzqZfyHaYfxSCQSCYXDEfPMYZqqxUNEmW97ms4fzyKN8a2zeCQcS2Q9H2ZeltIyBInxWa5uNl+gZcmQYQeQIdugMw2MzjRwwDrnU4Y6bmmRiOG9GtPbN/Yy1HnVz1SgmPnuz9Ivsx9k+k/IcmUoHgmHw4y7MMNLMqKvqtgpguHTEndq/62/ec3MUYayv551s3N1pCm7ycQyzqnhbHU8nhNjPkhj2gDrkyb/YT+7bHhMJ6s/pwyZHjzjWH3JfL/Q/PFQx/Nhttqf/b4b83km990yzw/j+xGN+U/IUGbQmQZGZxo4YJ3zJUMZD+Z23LcyNMlShtLfKIdC4bD50s/aXSgcDlt8w5u53c57Tsy8MpQGOp9nMt5PTFxGS1MTs6lk7p9xg8p1p/mSIa4jNfqKeVNZZQwLQ4abs4Xy2B22QYZjjJWhtC0ZZpr1O0HMUdC3ETc+n203jsZHoTqnYfoLMldxDK8ZxvcE1oNhXE500y1zF+YDNn81ZMg26EwDozMNHLDOlDLUeReyeM8qxPh2NfOSb7y5Gn/mxzKRuPEJIRuM2Td1j7JYKzJ+WPRtMmN7481Q1k7Zd7v0YLBvXczFM0bcrAxlHSnzNpzdzPg2n+EkZr7RZjvYfIlHQpG4+d1Sg6pZ6XHWjM56I85yatrNv/R5Np/VzJUy40dtT1ai87cj8XTLPDzGEaYmIHPZjHf+2ET/chsgYBdiyhroTFMDnWlqSJOhNpdxvEghCILkGP06Y3MhSiaTbq9deQ860wSdaRKwzvir9QiCKBesDKGzMIzONHDAOkOGEARRLpAhdBaG0ZkGDlhnyBCCIMoFMoTOwjA608AB6wwZQhBEuUCG0FkYRmcaOGCdIUMIgigXyBA6C8PoTAMHrDNkCEEQ5QIZQmdhGJ1p4IB1FpQhBEEQryN2UbO5fOUXRmcaGJ1p4IB1di1D0Wg031dIBEGCn2g0KnZRs7l85RdGZxoYnWnggHV2LUPS4YANKGUNv3RubGxsbGwU2DLGmQZGZxoYnWlgdKaBA9YZMiQCo7MreOHChQsXLhTYMsaZBkZnGhidaWB0poED1hkyJAKjsyu4vLy8vLxcYMsYZxoYnWlgdKaB0ZkGDlhnyJAIjM78cCKR0B8BSSQSbreMcaaB0ZkGRmcaGJ1p4IB1hgyJwOjMD7/77ru6DL377rtut4xxpoHRmQZGZxoYnWnggHWGDInA6MwPDxs2TJehYcOGud0yxpkGRmcaGJ1pYHSmgQPW+YEkX9ra2jhJt7CreFcDnb2osXv3buMPS+/evVv9zjnCroLOwrCroLMw7CroLAy7CjoLwzbBypAIjM6c8JIlS4wytGTJEvU75wijMw2MzjQwOtPA6EwD23SGDInA6MwJjxw50ihDI0eOVL9zjjA608DoTAOjMw2MzjQwZEgyjM488KlTp0KhUEFBgdGHjhw5wr9ljDMNjM40MDrTwOhMAwesM2RIBEZnHnj58uXZf2OhtraWf8sYZxoYnWlgdKaB0ZkGDlhnyJAIjM488BNPPJEtQ6NGjeLfMsaZBkZnGhidaWB0poED1hkyJAKjsyN85syZ7PfI9H+eOXOGc8sYZykw/rgyZ/Q/Ddul5oZj0JkGRmcaGDIkGUZnR3j16tVWt5zVq1dzbhnjLAWm9Am/x9OTouDccAw608DoTANDhiTD6OwIV1VVWd1vqqqqOLeMcZYCp27ziE0gQ8ygMw2MzjQwZEgyjM728Pnz5+2//z5//rxqnWXBCnaGDPEEMsQMOtPA6EwDQ4Ykw+jsCjbejP3SWRhWsDNkiCeQIWbQmQZGZxoYMiQZRmdXMGSIvgZkyG0gQ8ygMw2MzjQwZEgyjM6uYMgQfQ3IkNtAhphBZxoYnWlgyJBkGJ1dwZAh+hqQIbeBDDGDzjQwOtPAkCHJMDq7giFD9DUgQ24DGWIGnWlgdKaB7WSoLd9JJpP5ruA66Owq+m1G4AsxzlICGeKJ8Czlj4Jzwz7Tp0+3/7FQxTN9+vR8DyFvfDc32gLXGStDIjA6u4L1C5PAljHOUmDj+CNWSY1Sl5ob9smPwkhNvobOLey7uaEFrjNkSARGZ1ew8arkl87CsIKdOe8KXTypUepSc8M+vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0deADLkNZCg7vp45kCGv4YB1hgyJwOjsCoYM0dewkaFoNBpCQqFQKBSNRrNHqUvNDfukxsSP4SyvwjhrPpwbWuA6P9CW7ySTyXxXcB10dhX9qiTwhRhnKTHdFShtQ/2YhsXTE6Hg3LCPaYj8FYITKjG+mxttgeuMlSERGJ1dwcZLql86C8MKdmbe9fk3FdRYDUuXmhv28fVU4SyvwjhrPpwbWuA6Q4ZEYKU6412P3GN8uyTHk6LU3NCjH6PVP7tsrIali1w3eMI/VSivQvavVrflVRhnzYdzQwtcZ8iQCKxUZ7JrULAj66QoNTf0mA7Q8Xi7SKyGpYtcN3jCP1VoX6wuKjliKoyz5sO5oQWuM2RIBFaqM//VAWHGcQD9Ozf0mA4QE0aP1bB0kesGT6SbR+6BDHlaoyt3hgyJwEp1xr0tx0CGumYgQ46BDJHBvpsbWuA6Q4ZEYKU6496WYyBDXTMCMnT58uV79+4ZP+L3uWEfyBAZ7Lu5oQWuM2RIBFaqM+5tOcbvMjRlypRNmzaZ9gsZcgy/DF24cGHDhg3jx48PhUL37983fkrxuZEjDBkig303N7TAdYYMicBKdca9Lcf4XYYmTZqkH0JFRUVtbW1jY6NGJkPxSCgSz30ziVi4YzuJWDgUjiW83yWHDLW0tKxZs2bMmDEhQyBDOZI5BjLkaY2u3BkyJAIr1RkylGP8LkORSCSUmdLS0mnTptXV1V2+fFnzUoZkiYkLGZLmQpbDcvjw4RUrVjzxxBMhVv755x/jRhSfGznCHspQIhbuHFJX5xMy5GmNrtwZMiQCK9UZMpRj/C5D9r/ipaqq6sEHH/RGhqSJSVqGOEhJLsSWoREjRqSGrrCwEDLkjQzFIykHikdCDmuB3lZSYZw1H84NLXCdIUMisFKdIUM5xncydOvWrZaWlh9//LG+vn7Tpk1Waxim9OnTp6amZseOHd5MmNR3+oYbW/q7/5TAGBYEDKTVylA8ks1Ki77hxsbGRYsWDRkyhGcMQ6FQjx49SkpKevbs+cgjj5SWlvbp06dfv35lZWUDBgwYOHDg4MGDy8vLhw4dOmzYsOHDh48YMWLUqFH/+te/Ro8e/dRTT1VWVo4dO/a5556bMGHCpEmTXnjhhalTp06fPn3GjBkzZ86cPXv266+/PmfOnHnz5i1YsGDevHnvvPNObW3t0qVL33///Q8++GD16tVr165dv379xo0bP/vss82bN3/xxRfbtm376quv6urqdu3a9d133+3du/eHH35oaGhobGw8fPhwIpE4evTo8ePHm5qafvnll9OnT7e0tJw4ceL8+fPJZPLixYutra1//vnnpUuX/vrrrytXrly9erWtre369es3bty4deuWfsi3b9++c+fO3bt37927dz8r//zzzz///ONqUmWeZOd3RrPPmkQS9xRhOGCdIUMisFKdIUM5Rk0Zam9vP3v27MGDB7du3bpy5cq5c+dOnDixoqKid+/enLft7DzzzDOffPKJFxPG8J1+IhaLd34oJUHxWCzRYUIpLzIsCbBlKB5Jfbm71QO+6ONw8ODBBQsWDBo0SHhUkVQ4Rz4eyTibhsnDe9YkkrinCMMB6wwZEoGV6uzqMoRkx3EACeZGS0vLt99+u2LFipdffvmJJ57o27evzS2nqKho6NCh48aNi0ajb7zxRmVlJc+N6syZM5zHK5BsWzHd8DqhjJteinF8ZoixtZxjGgf9n+Xl5TZjWFBQcPPmzUuXLl2/fr2tre3KlStnz569dOnSn3/+2dra+vvvvyeTyfPnz589e7alpeXMmTPNzc0nT578+eefjx079tNPP+3cubOxsfHAgQMNDQ379u3bs2fPrl27vvnmm+3bt9fX19fV1cXj8c8//3zTpk0bNmxYuXLlmjVrVq1atXz58qVLl7733nuxWGzx4sULFix4880333jjjZqamldfffWVV155+eWXp0yZMnXq1BdffHHSpEkTJ04cP3782LFjn3nmmaqqqieffLKysnLUqFEjR458/PHHhw0bNmTIkPLy8sGDBw8aNGjAgAFlZWX9+vX7n//5n969e5eWlj7yyCM9e/YsKSl5+OGHU/Ote/fu3bp1e+ihhwqzUlBQUFBQ4GZSmc8x/5uk2WctdxL3FGE4YJ0hQyKwUp0hQzmGXoYuXLiwd+/eNWvWvPzyy5WVlcXFxdn33W7dupWXlz/77LPRaDQWi33yySf19fUnTpy4dOmSaWuxWIx55+7bt++CBQsSiQTzrs9/RHxJvf+VlhrzDS7LaFJ2ZLUylHE8sp4V6ozVsOzfvz8Wiw0fPpwpQ6aN+Pe6wRPp5qFpGmSIGd/NDS1wnR9oy3eSyWS+K7iOUp0pZUjBP8eYe/TdyTod2XPj77///vHHH9euXfvqq68++eSTvXr1yj7YgQMHTpgwYf78+Zs2bTpw4MCZM2f492iSoe7du1dXV3/11VcpQP+46Xg9GszOJSLWCo+7laEM2tU7KZxhDotxYA8cOPD222+Hw+mnnAoLC3OYGmpdN3jCP1VcTSrKt8nyPYS88d3caAtcZ6wMicBKdfb03maKmNYIh/KgbACBuXHixIn//Oc/+ntYqTcRUunXr9/zzz+/YMGCdevWJRIJzu1bYatXr9Y3O3ny5Lq6uvb2dhNsOkAPxjYRi3Te3FI3uox3zqyeGUo9Z2QrQ/qqE9XKUPY4NzU1LVu2rKKiorCw0PQp/143eMI/VVxNquwHqPnPrfRKKoyz5sO5oQWuM2RIBFaqs1Le4Lsd8eyL56ScPHkyHo/PmzevoqKiW7duJvsZOXLk7NmzN2zYcODAAeP7XFLmxrp16z7++OPW1lYr2HsZsvi5r/QHmT9Nlr4DOrxNFo7FqFaGNNuT0tzcbPqIf68bPPFIhjKs2OWiH2TI0xpduTNkSARWqrNS3uC7HfHsi3lSfvnll7q6uvnz51dVVWU/9BMOh2fOnPnxxx8fOnTo5s2brrYsHaaQIR9GQIay49/rBk+8kiGNKcr5qZT70FE+PBCA8Dz/ABnKZw3/dtZnGP9X5RKyfSl1UPo4Nzc3b926dcGCBc8880yPHj1Mr/DHHntsxowZa9asqa+vv3btGueuIUN5jNWwdJHrBk/4p4qCVwZOMvehk6IIXSoEJ8UqkCHJsFKdOaeXlJDtK+8HdevWrePHj9fV1S1atGjMmDElJSWm1/OQIUNeeumlVatWNTQ0XLlyJfWFSs0NPaYDpBxblWM1LF3kusET/qmi4JWB7L6LFxR/IEN28d0FQlOsc969wdc7Su3rxIkTW7dujcViU6ZMGTp0aPZ3M+Xl5dOnT1+1atUPP/zw119/WW1NqbmhBzLEDGTIMZAhHhgvKP5AhuziuwuEplhnpWXI+z/HKJCrV6/+/PPP27Ztq62tnTJlSrb3hEKhwsLCkSNHzpgx44MPPtixY4f+F095otTc0AMZYgYy5Bi35kEWieUhQ5QhOylWgQxJhpXqTPlSdLkvij/HaJXbt29fuHDh6NGju3btWr9+/cKFC6dOnVpRUVFaWsq8vI4YMaK6uvr999/fsWNHc3Oz8e9x+ndu6DENpgf3Jh8ne5S6yHWDJ6YhsomCv4GMszxkiDJkJ8UqkCHJsFKdKV+KrvaV+59jvHXr1rVr1/7+++9Lly7pf+ugpaXl9OnTP//8c2Nj4+7du7dt27Zx48ZVq1bV1tbOnTt3xowZ48aNGz58uJXx6CkpKRk5cuRLL720bNmy7du3Ox6Uf+eGHtMB4odfUjHeVvWPeHpSFJwb9kmNiR/DWR4yRBmyk2IVyJBkWKnOlC9FV/vK/ffM5pJu3boNHDiwsrLyhRdemDdv3po1a3bs2HHs2LHsx30cD8q/c0MPLtY8gQxlx9czBzKkYCBDdvHdBUJTrLOqMpTrXyB68MEHH3744V69evXp06dfv34DBw4sLy9/7LHHRowYUVFRMXbs2ClTprzyyivz5s2LxWKrV6/+9NNPv/rqqwMHDpw+fdr44125H5R/54YeXKx5AhnKjq9nDmRIwUCG7OK7C4SmWOegypA6B+XfuaEHF2ueQIay4+uZAxlSMJAhu/juAqEp1lkpbzCG5s8x5h7IEKJBhljx9cyBDCkYyJBdfHeB0BTrrJQ3GEPz5xhzD2QI0SBDrPh65kCGFIzSMpTkS1tbGyfpFnYV72r4t7NS3pARkj/HmHv0fck6Ka5CM59xseZJahp0kesGT3w9cxxf17KGztejRByykyIQrAyJwEp1VleGNIo/x5h7sDKEaFgZYsXXMwcrQwpG6ZUhL/YX7AuEplhnpbzBdzvi2Zd/54YeXKx5AhnKjq9nDmRIwUCG7OK7C4SmWGelvMF3O+LZl3/nhh5crHkCGcqOr2cOZEjBQIbs4rsLhKZYZ6W8wXc74tmXf+eGHlyseQIZyo6vZw5kSMFAhuziuwuEplhnem8gC+VB2QD+nRt6cLHmSWqUush1gyduZ47Xf+mF86+SuSoPGaIM2UmxCmRIMqxUZ8qXooJ/jjH3OA6gf+eGHlyseZIapS5y3eCJ25lDcFlwW8YRgwxRhuykWAUyJBlWqjNeijnGcQD9Ozf0YIbwJDVKXeS6wROP/EMskKEABDJkF99dIDTFOuOlmGMgQ4gGGWIFMsQD4/XFH8iQXXx3gdAU64yXYo6BDFG++5nH7Nmzx2YQdCaXcXaMgnPDPqkx8Yh3FY/KQIYoQ3ZSrAIZkgwr1RkvxRzjOID+nRt6HA/QO/9QKsuWLXMchFzG2TEKzg37pMbEI95VPCpDJUPxiP6LZxOxsMX87PzbRc6EhOi/DtemUfq35HY27/xHRotELOymFdlJsQpkSDKsVGdPL0BdIY4D6N+5ocfxAAM/hZYtWwYZEoAhQzwwbzGzR2iaFo8wTMLCL1xqR+fXWHgV4y8CJGJh40dT+zPKUIYYMf7tFMiQXXx3gdAU60x/J1PqB2hzj+MA+ndu6HE8QPopRBzIkBjsdmK45V3d3z0qQ/k2mUkdTPZh+LDFlTGHlSF9o3biYvaaLBlK/22lVJfMD3H0IzspVoEMSYaV6kx/J+PXGuHQH44N4N+5ocfxAOnHnDiQITHY7cRww3fc8ruUDGWk03myRkDiypCmaR3GkvmliVjY/KEMrwnHEkwZMqwQhWOJzEZc/chOilUgQ5JhpToraA/Kblxsj/6dG3ogQ5AhMdgzGYpHQqFInPXGEXkZGhnqUI300SZi4UgsFo7EO4bCEJkrQ1bbMi8RJWLh1Mc6rMZJhiKRsPunh5SWobZ8J5lM5ruC6yjVWUF7UHbjNnuUdTpUmBs//PCD8Z+QIX4ZSg3arl27pJ8XFeaGq3gmQx0hkCGFRslgC7pXdLxNloiFZT4abZ14pEODEolE1mdSntNZ03lliP11tiE7KVaxeQ1iZUgEVqozZMjrPfpubnzxxRcDBgx466239u/fr+V5ZSjrEmn8XtXw/anhw66eyOQKvwzt37+/pqamrKysuLiYZ8tqzo179+5du3attbW1paXlxIkTjY2Ne/bs+frrr7ds2fLpp59+8MEHK1as+Pe//71o0aK5c+fOnj07Go1OmzZt8uTJEyZMePbZZ5966qmKiooRI0boY/Loo48OGDCgb9++vXv37tWrV0lJSY8ePR5++OHi4uKioqLu3bt369atsLCwsLBQQRlyxHJ/DbqUofQiTPqZoc6PWS8KGRKJ8VCZq1CmF1bmclTGaUj9g+eZIaPJ+X9lyIv9qXmBkAgr1dnLOxk7nu5RwcPx3dyoq6tLXbP69Omj/8f9+/eteK/GnPFYiPGZ0XjEcEmNdELZbxvkHkcZamhoMN1KioqKeLbs6dy4f//+lStXksnkqVOnjhw5snfv3vr6+s8++2zNmjVLliyZP3/+7NmzI5HI888//8QTT4wYMWLw4MF9+vQpKiriuFV6GP5j7IIyFMtcS3FaVxF+UCj99TZnqlN2Oh1NT1rQHFeGjKDF4+CZITspVoEMSYaV6uz2GpF7PN2jgofju7mxdevW7AtfcXFxdawBdVYAACAASURBVHX1l19+ef36dRPvyZhzPBZifFAh44Oy3zSwkqGGhoZ58+b1798/e7i6devGs2XOk3Lz5s3Lly8fOnTo5MmTR44c2bdv3/bt2z///PO1a9cuXbp04cKFr7322vTp0ydMmDB69Ojhw4f379+/R48eDtJhncLCwl69eg0YMGDYsGH/+te/nn322UmTJlVXV7/22mvz5s178803lyxZsnLlyo8//njTpk11dXX19fXffPPN999/39DQcOjQoZ9++qmpqen06dP61i5cuPD7779funTp77//bmtru379+s2bN2/dutXe3n779u07d+7cvXv3/v379+/fdzuR1JShgwcP8sMuirEWSdn6kNaOLJnJ7aWR+RNjWa+/jG9EuGXI6WiMET4psmDIkGRYqc6e3Mls43aPnv4Abe5x3KPv5saXX35pf7OcPHnyf/7znz///FPnvRxzu/sdaxGIKUi5xiRD+/bte+ONN8rKyux94syZM83NzU1NTT/99NPBgwf37du3e/fur7/+uq6u7rPPPlu/fv3q1atjsVgsFlu4cOHcuXNfffXV6urqyZMnP/PMMxUVFY899lhZWVlJSUlBQYH96bDpUFpa+uijj44cObKqqmrSpEkvv/zynDlz3n777eXLl69fv37Lli3ffPNNQ0NDQ0NDc3Pz+fPn//rrr/b2dvvR4J9IbieGW15NGZozZ07//v3nzp37ww8/OMIuimUdrYU+GFZMc14Z6thG5/Y6fIY57olYmL0myylDXL9ySPikyIIhQ5JhpTp7eSdjx80ePf8B2tzjuEe5c+P+/fvXr1+/fPnyhQsXjh071tTU9N///vfAgQN79+7duXPntm3bNm/evGHDhg8//HD58uW1tbWLFy+eP3/+3LlzX3nllVdeeWXGjBmRSGTy5Mnjx48fO3ZsVVVVZWXlqFGjwuHw0KFDy8vLBw0aVFpaynm7HTdu3Mcff+zlmFvf74zXfJsfNJYRXYZmzZr15ptvDhgwwIWPSEqPHj369es3aNCgUaNGVVVVTZw4sbq6uqamZvHixe+///66devi8fiOHTsaGhqOHj3666+/tra2tra28h+gRxcZtxPDLa+sDKVOXJ8+fWpqar777jsrmHdHnQ/cOB2vbi7xTjGR8jZZxgNBHcKS+fP2tr+FyPaZoYw9QYZyg5USC84o1dntNSL3cO+R4gdoc4/jHvWnN27cuHH58uVkMtnc3Hzs2LHGxkZdX7Zu3bpp06a1a9euWLGitrb2tddeq6mpiUajU6dOHT9+fFVVVUVFxbBhwwYOHNi7d++8P89hylNPPfXhhx/q/+3N6LJPvvXF1/L701yiy9Crr7769ttvDx8+nHNwhg8fPmLEiIqKiieffHLs2LETJ06cOnXqjBkzZs+e/cYbbyxYsEBfFlq9evW6des+/fTTLVu2bN++fe/evYcOHfr5559bWlr++OOP69evp57WUuq6wRO3E8Mtr74MpVJSUjJr1qy6urp79+4J7IgtFKZEYsa3iC0f9+F+dRhWXlP7Nf3Sx9Rj24yNprvqn2StDBlL8pxK4ZMiC4YMSYaV6uz2GpF7CC559+/fv3fv3r179+7evXvnzp3bt2+3t7e3t7ffunXrxo0b165du3Llyt9//3358uU//vjj999/TyaT586dO3PmzC+//PLzzz8fO3YskUg0Njbu379/z549u3bt+vrrr7du3bp58+ZNmzatW7dOX3fR3+DQ91hdXT1lypTx48c/88wzlZWVI0aMGDJkSP/+/UtLS4uLi22uYG5TWFhYUlLSt2/fQYMGDR06tKKi4qmnnho3btzkyZOnTZs2c+bMmpqat95665133lm6dOmqVavWrl27YcOGTZs2ffLJJ9u2bdu+ffu33367Z8+ehoaGxsbGRCJx/PjxU6dO/frrr+fOnUsmkxcvXvz000/tOzz99NMrV6787bffxE6om2SffKffhevBQ0Omt8mampqWL18+evRo+1GyeeQ8Ff9eN3jidmJ4OZHyLEOpFBUVVVdX19fX37x5U6xYV47wSZEFQ4Ykw0p1pn8put2jgAyploKCgh49evTt23fw4MGPP/54ZWXl2LFjJ02aNH369FmzZs2dO3fx4sVLlixZtWrVsmXLNm/eXF9fv2vXroaGhkQi0dTU1NLS0traevXq1du3bxsP1qO5sX37duZRjBkzZu3atefOnWOOOX8TNzGffOcfFvPgqSGrB6jPnj378ccfP/fcc8zhunv3ruOW/Xvd4InbieHlRBIs410KCgqmTp36xRdfeHrUAQvnWEGG8lnDv53pX4pu9yggQ4WFhQ899NBDDz3UrVu37t27FxUVFRcXFxcXP/zwwyUlJb169SotLe3Tp0/fvn379+8/cODAwYMHDxkyZPjw4SNHjqyoqBg9enRVVdW4cePGjx8/efJk/d2NWbNm1dTUzJs3b+HChbFYbNmyZfobHPoet2/fvnv37oaGhsOHDx8/fry5ufncuXOtra1XrlxJPWjMExXmxs6dO7Ov3TbFvJxCmSffYtXH8JP1Hr5NZvOj9ZcvX05NvNSImcyVGf9eN3jidmJ4ei0SK+NdIEMC4RwryFA+a/i3M/1L0e0eA/DMEP/WVJgbugyNHTt23bp1yWTS8QC9HPNsGTIl9fvnMj8gNfy/dPHmzZvxeHzmzJk9e/Z0/LEszYdzwxXsdmJ4+uL1qAzeJqMMZMguvrtAaIp1VtAeTIEMSdkyP/ztt982Nzen/plXGVIiYn+bLHW3s4nv5oYrWMw/PI3bMo4Ypwz17NkzlweoJYfxHHb6e4iMn9i3fWLbk+88bCN8UmTBkCHJsFKd6V+KbvcIGZKyZWHY8QDzcDWnDf5QqxjsdmJEo1HbW2+uiUaj/GWE77ue/Gi9t8nwH7MMZXzGeCXm+s1AciN8UmTBkCHJsFKd6V+KbvcIGZKyZciQcCBDYrCvJ0YuMuTJL130MJAh3kCGJMNKdVbQHpTduNge/Ts39ECGIENisK8nhvB916s/xyE1WW9/4W0yrtjJUFu+k0wm813BdZTqrKA9KLtxmz3KOh1KzQ09nDIU+PDIkKcnQsG5YR99TGS/4IhCcELzN0qm3z/hs5UhgpNiFZvXIFaGRGClOtO/FD3do4KH49+5ocfxAL1+1EOR7Nmzx2YQdCaXcXaMgnPDPqkx8WM4y+c+dPkYJTuPUV+GHLG8vAYhQyKwUp3pX4qe7lHBw/Hv3NDj61saWSBD2fH1zAmyDDF+RUXGn/nD22RWgQxJhpXqnC978DT0h2MD+Hdu6KEfUj8mNUpd5LrBE1/PHLL7rgKjlLHkY5ShzLUgrAxBhmTDSnWmfykq9QO0uQcyhGiQIVZ8PXO6kgyZ3wwzylDmo0WQIciQVFipzgq8FP0dyBCiQYZY8fXM6UIylPk4tUGATPYDGYIMyYaV6pz/l6LPAxlCNMgQK76eOV1IhrL+5k2H45jkBzIEGZIOK9U5/y9FnwcyhGiQIVZ8PXOCLkPGR6PNypP6g3+ZstMhQ+nHr6ldCDJkG99dIDTFOvv6gqVCIEOIBhlixdczJ+gy5MtAhuziuwuEplhnmpdivn4VDcHD1I4D6N+5oYdmhvg9qVHqItcNnvDMHGWvDJzTHjJEGbKTYhXIkGRYqc40L0X6i10qNIdmA/h3buihGUa/JzVKXeS6wROemUN/QUgl9/KuRsMK5twRokGG7OO7C4SmWGeal2JeXvCKHJp/54YeXKx5khqlLnLd4IlE55AbyJBPAxmyi+8uEJpinRUxBv/uFDKEaJAhViBDPDBeX/yBDNnFdxcITbHOihiDf3cKGUI0yBArkCEeGK8v/kCG7OK7C4SmWGdFjMG/O4UMIRpkiBXIEA+M1xd/lJahtnwnmUzmu4LrKNVZEWPw7071vcg6HUrNDT24WPNE7jRgRsG5YZ8AyJAio4ToITspVrF5DWJlSARWqjNkyOu9+Hdu6MHFmidYGcpOAGTIcVO5Dx1eX/xRemXIi/0F+wKhKdZZEWPw7067pgzl69fDKJLs31Kjf9zTk6Lg3LBPakxyZKRHYjHIEGXITopVIEOSYaU607wUxfaS/r3vQr/5XZFD8+/c0MM8QIli4dMwB8TTk6Lg3LAPc6AEmOwQXBk4i0GGKEN2UqwCGZIMK9WZ5qUoshfjn8aJR0x/QMernbqP4178Ozf02N/7u2AgQ5ykVzJEcmWADCkYyJBdfHeB0BTrrIgxOCURC7v+FlCRQ/Pv3NADGTIFMsRJercyZIhXVwbIkIKBDNnFdxcITbHOihiDU+IR9+vhihyaf+eGHsiQKZAhTpJEhry6MkCGFAxkyC6+u0BoinVWxBjsI7QWroVCoQcffPChhx7q3r17cXFxcXFxjx49SkpKevXqVVpa2rt377KyskcffXTo0KGPP/54RUXF6NGjq6qqnnvuuRdeeOGll16aPXv2G2+8sWjRon//+98rVqxYv3795s2bt2/fvmfPnsOHDzc1NZ09e/bvv/+GDHW1dDUZunPnzqVLl1paWo4fP37w4MEvv/xy27ZtmzZt+vDDD5cuXfr222/PmzfvtddemzFjxosvvjh+/PgxY8aMHj26oqJCH5NHH320rKysd+/epaWlvXr1Kikp6dGjR3FxcVFRUbdu3fJ1ZYAM+TGQIbsoePNwjFKdlZch/VlJgackSR/yffTRRysqKsaOHRuJRF5//fXFixevWLFi48aN9fX127dvP3r06Llz565du+bYOV9z45133nnttde+//77bJh57rryFdx+QEzjfPLkyaVLl44YMYK5qTxeN+7cudPa2trU1NTQ0LBly5bPPvts1apV77zzTk1NzbRp08aOHTtq1KiBAweWlJQQvHz4j8uQXK8MuTMaZIg2ZCfFKpAhybBSnWleioJ7Eb/cpXd67969O3futLe3t7e337x588aNG9euXbt69eqVK1f+/PPPCxcunD179vTp0ydPnjx27FgikThw4MCePXt27NhRV1f32WefrVu3buXKlUuWLFmwYMHrr79eXV09adKkMWPGVFRUDBkypHfv3q4u+t26dSsrKxs5cuS4ceNeeumluXPnLlmyZP369fX19Q0NDU1NTf/973/b29s5D1Di3Fi8eLHesE+fPv/3f/+3c+dO0zAyx5Z/75ISj+g7jsQ7f55IdHLkEPsB0ce5ubl5xYoVqdWRnj17Mjfl0XWjvb29ubn5xIkT+/bt27p169q1a2OxWE1NzZQpU55++umhQ4c+8sgjriZt3759H3vsscrKynHjxk2aNGnmzJlz58599913ly9f/tFHH23cuHHLli1ff/31d99919DQcOTIkWPHjjU1NelffvHixUuXLl29evXq1avXrl27cePGzZs329vbb9++fffu3TxeGXJnNMgQbchOilUgQ5JhpTrTvBSF9iLyNEDOOxXcSzKZbGpqOnjw4DfffLN58+aPPvrovffemzdvXjQaHT9+/OjRo8vLy3v27Ml5+ykpKRk8eHBlZeWkSZNmzZq1aNGilStXfv75599+++3hw4ebm5tbW1tv3bolcW4sWLDA1KFv375z587dv38/cxjzdAWPRzLeFIlHFJOh3377bdmyZaNHjzYNZnFxMXNTAteNq1evnjt37tixY7rofPTRR7FY7PXXX3/xxRefeuqpIUOGcK7ldOvWrX///qNGjXr++eenTp06Z86c2traDz/8cPPmzTt37jx48GBTU9PFixdv3Lgh3JlnkghNJIorA2cxyBBlyE6KVSBDkmGlOtO8FAX2koiFBZ4GyHGnXuzFeFJu377d2tp68uTJH3/88euvv964ceP777//1ltvzZgx4/nnnx81alS/fv2Kiop4bmb6LbasrOzxxx+vqqp64YUXZs2aNX/+/GXLlq1fv76urm7nzp379u3TH29qaWk5ffp0W1vb3bt3mSXfeust+30dPHjQ1VF7E0Vl6Pz586bhKiwsNP6ze/fuzE21trZeunTp3LlzJ0+eTCQSP/zww86dO7du3bp+/fqlS5e+9dZbM2fOnDRp0pNPPvnYY4898sgjBQUFPBOjqKhowIABFRUVEyZMmDlz5sKFC3WZ3rVrVyKRaGlpuXr1qrGGvx6gprkycBaDDFGG7KRYBTIkGVaqM81LUfCSZ4rLG58ihyYwN65fv37+/PmjR4/u2bOnrq5u7dq1tbW1+tscY8aMGTFiRP/+/YuLi3nui8w7ZWlp6aBBg8LhcGVl5bPPPvv8888PGjTI8QuLi4sXLlx46NAhnqP2JmrJ0O+//75+/XrjW05WslJQUPDcc8/p764OHTq0X79+JSUlnGZjyiOPPFJeXl5ZWTlx4sRXXnll0aJFq1at2rx5sy46v/32mz7fVLjW8UwSgYlEc2XgLAYZogzZSbEKZEgyrFRnmpdiXl7wihyad3Pjzz///OOPP5qbm48cObJ79+66urp169YtXbp0/vz5s2fPnj59+sSJE/Ub8LBhw8rKynr16vXQQw8J3IBNefLJJ/UbOX9VSVFIhubMmZP7SD788MN9+/YdMmTI//7v/1ZVVU2YMGHatGmzZ8/WV/g2bNiwbdu2vXv3/vTTT7/99tuJEyfu37/PWVKFa51+jLkz0iOxmCwZQvhDcFKsAhmSDCvVmXN65RiaveRlp457UW1u3L59+8qVKxcvXvz111+PHTt26NChhoaGiRMnOl6DysrKVq1a9csvv2hYGQqFNE27fv16fX39008/zfPO5o8//phIJPTfyHDp0qUbN278888/qs0NuTDPJFH2ykB23+3if+bPbbL/LKAXJ8UqdjKU5EtbWxsn6RZ2Fe9q+LezPsP4Z4NYaPaSl53qe5F1UlxF4tyYPn261dVHXwS6ePEi/dhmRS0Zyv5gWVmZ1TC2tLTkeAZdRYVrHc8kUfbK4Pi69nTo3MKugs7CsE2wMiQCK9UZMuT1XnwxN2bNmmW8c5eUlESj0fr6+uvXr9vc+/n3Limqy5Cmafv373/vvfdGjRplkqGbN29mb8oXc0MYDoAMOW5KhXHWfDg3tMB1hgyJwEp1VsQY/LvTYMiQvlY/aNCgefPm7dmzxwhDhkyxH5DU0J05c2bt2rVjx47VP3X9+vXsTflibgjDkCEy2HdzQwtcZ8iQCKxUZ0WMwb87DYYM1dbWJhIJJgwZMoVThlK5fPny5s2bTT/NrscXc0MYhgyRwb6bG1rgOkOGRGClOlMaQ15Cc2g2gH/nhh7mAdKMbVZ8KUM28fvcsA/PJKG7EGQl9/KuRsNT2HdzQwtcZ8iQCKxUZ87XfI7J109M8PzoQY5xHED/zg09zAOkmTZZ8c2f4+CM3+eGfXgmibJXBp7yrkbDU9h3c0MLXGfIkAisVGfO1zxiFccB9O/c0MM8wK48bewHpItcN3ji60kCGfIaDlhnyJAIrFRnX1+wVEhXlqGuHOaAeHpSFJwb9mEOlF/CWV6FcdZ8ODe0wHWGDInASnX29QVLhTgOoH/nhh7mAXbx3xSX/SaL/nFPT4qCc8M+qTHxYzjLqzDOmg/nhha4zpAhEVipzr6+YKkQxwH079zQgxnCE8hQdnw9cyBDXsMB6wwZEoGV6uzrC5YKgQwhGmSIFV/PHMiQ13DAOkOGRGClOvv6gqVCIEOIBhlixdczBzLkNRywzpAhEVipzr6+YKkQyBCiQYZY8fXMgQx5DQesM2RIBFaqs68vWCoEMoRokCFWfD1zIENewwHrDBkSgZXq7OsLlgqBDCEaZIgVX88cyJDXcMA6P9CW7ySTyXxXcB2lOvv6gqVC9AGUdTqUmht6MEN4IncaMKPg3LCPr2cOwQmVGN/NjbbAdcbKkAisVGdfX7BUCFaGEA0rQ6z4euZgZchrOGCdIUMisFKdfX3BUiGQIUSDDLHi65kDGfIaDlhnyJAIrFRnX1+wVAhkCNEgQ6z4euZAhryGA9YZMiQCK9XZ1xcsFQIZQjTIECu+njmQIa/hgHWGDInASnX29QVLhUCGEA0yxIqvZw5kyGs4YJ0hQyKwUp19fcFSIZAhRIMMseLrmQMZ8hoOWGfIkAisVGdfX7BUCGQI0SBDrPh65kCGvIYD1hkyJAIr1dnXFywVAhlCNMgQK76eOZAhr+GAdYYMicBKdfb1BUuFQIYQDTLEiq9nDmTIazhgnSFDIrBSnX19wVIhkCFEgwyx4uuZAxnyGg5YZ8iQCKxUZ19fsFQIZAjRIEOs+HrmQIa8hgPWGTIkAivV2dcXLBUCGUI0yBArvp45kCGv4YB1hgyJwEp19vUFS4VAhhANMsSKr2cOZMhrOGCdIUMisFKdfX3BUiGQIUSDDLHi65kDGfIaDljnB9rynWQyme8KrqNUZ19fsFSIPoCyTodSc0MPZghP5E4DZhScG/bx9cwhOKES47u50Ra4zlgZEoGV6hxCZETWSVFqbuhxPEBEw8oQK/l7OUpLvobOLey7uaEFrjNkSARWqnM0Gs33Bcf3iUajsk6KUnNDj36M/F/bNZMapS5y3eCJ19eWgoICT7dv/7r2dOjcwr6bG1rgOkOGRGB0dgU3NjY2NjYKbBnjLAXWbwz8X9s1kxqlLjU3HONd55UrV06bNs2LLWOcaeCAdYYMicDo7ApeuHDhwoULBbaMcZYCQ4Z4AhlixrvOY8aMKSwsvHXrlvQtY5xp4IB1hgyJwOjsCi4vLy8vLxfYMsZZCgwZ4glkiBmPOv/+++/6gK9du1buljWMMxUcsM6QIREYnfnhRCKhX/USiYTbLWOcpcD5lqF4JBSJ2wGJWNiBIAhkiBmPOm/cuFEf8BdffFHuljWMMxUcsM6QIREYnfnhd999V7/qvfvuu263jHGWAqspQ/EIxxOw4ViCqiVkiBmPOo8fP14f8KKiovv370vcsoZxpoID1hkyJAKjMz88bNgw/ao3bNgwt1vGOEuB6WXIQXQy1chx4YgmkCFmvOh8+fJl43T45ptvZG1ZD8aZBg5YZ8iQCIzOnPDx48eNV73jx4+r3zlHWMHOeZEhg9/EI8YFHpP7JGLhUCQWCztLk8eBDDHjRefPP//ceJpnz54ta8t6MM40cMA6Q4ZEYHTmhJcsWWK86i1ZskT9zjnCCnbOswwlYmFLGbJ6WigeIX2LTNMgQxbxovMLL7xgvCz07NlT1pb1YJxp4IB1hgyJwOjMCY8cOdJ41Rs5cqT6nXOEFeycXxlKxMIZizyGzyViYYbzsD/qeSBDzEjvfO3atew1wO+//z73LaeCcaaBA9YZMiQCozMPfOrUqVDWL5k9cuQI/5YxzlLgfMpQx9KPYaUn9blELBwKh8Mm7cnbT5ZBhpiR3rmuri5bhmpqanLfcioYZxo4YJ0hQyIwOvPAy5cvz77q1dbW8m8Z4ywFzpsMZbzZlYiFQx1eFIlrHU8SJWLhcCxm/bg1fpos37D0ztOmTcs+z3369Ml9y6lgnGnggHWGDInA6MwDP/HEE9lXvVGjRvFvGeMsBc6LDLFUplN9LJ8n0j+Sn58tgwwxI7dze3t7YWEh03v379+fy5aNwTjTwAHr/EBbvpNMJvNdwXXQ2THHjh0LZb1Hpv/z2LFjnBvBOEtJ3laGnD+nnAx5eiIUnBuOkdt58+bNVouANTU1svaCcaZJwDpjZUgERmdHePXq1VZXvdWrV3NuGeMsBYYM8QQrQ8zI7fzyyy9bXRb69++fy5aNwTjTwAHrDBkSgdHZEa6qqrK66lVVVXFuGeMsBVZDhtK/iNHwKYMMpT5P/4NkmqZBhiwisfP9+/eLi4utLguhUKixsVG1zmQwOtPAkCHJMDrbw+fPn7e55IVCofPnz6vWWRasYGd6GfJjIEPMeNd50KBBoVCIc/uKdPbjOKOzMZAhyTA6u4KNN2O/dBaGFewMGeIJZIgZyBANjM40MGRIMozOrmDIEH0NyJDbQIaYgQzRwOhMA0OGJMPo7AqGDNHXgAy5DWSIGcgQDYzONDBkSDKMzq5gyBB9DciQ20CGmIEM0cDoTANDhiTD6OwKhgzR14AMuQ1kiBnIEA2MzjQwZEgyjM6uYMgQfQ3IkNtAhpiBDNHA6EwDQ4Ykw+jsCoYM0deADLkNZIgZyBANjM40MGRIMozOrmDIEH0NyJDbQIaYgQzRwOhMA0OGJMPo7AqGDNHXgAy5DWSIGcgQDYzONDBkSDKMzq5gyBB9DTEZikajoSAmGo06HrtO5jLOjlFwbjgGMkQDozMNDBmSDKOzKzh1m3G7ZYyzFNg4/vbJi6nQhPPYcxlnxyg4NxwDGaKB0ZkGtpOhJF/a2to4Sbewq3hXA529q6HfZgS27CoYZyuY0wa0gL6h5kqGPD0prhL4+azL0OHDh6Vv2VUCP87ozBmsDInA6OwKNt6N/NJZGFawM2QIK0PCsHedsTJkDDrTwDadIUMiMDq7giFD9DUgQ6lAhnKBIUM0MDrTwJAhyTA6u4IhQ/Q1IEOpQIZygSFDNDA608CQIckwOruCIUP0NSBDqUCGcoEhQzQwOtPAkCHJMDq7gmlkSJEoODcgQ5AhYRgyRAOjMw0MGZIMo7MrGDJkFcgQQSBDucCQIRoYnWlgyJBkGJ1dwTQyFI+EInFN07RELBzKiv4pi68whbkBQ8KxhKTOkCGCQIZygSFDNDA608CQIckwOruC6WXIpCtp64lHDJ/KkKHsr3L+TM6dIUMEgQzlAkOGaGB0poEhQ5JhdHYFey1D8UjGuk0kYi1D+rJPyowM/8VeJOr4CsiQjwMZygWGDNHA6EwDQ4Ykw+jsCiZZGUpLjuPbZIlYOBLXUjLkJDuQIX8HMpQLDBmigdGZBoYMSYbR2RVMIUOdq0ORuM3bZGIPA0GG/B3IUC4wZIgGRmcaGDIkGUZnV7B+m5kzZ86cOXNeffXVOdyJRqM8mL7WE4mEInEtHgmFw3Zvk1lHf57ISZg6tSnHznpcjYYwbBx/+xDJkGGMqYjXIwAAEf1JREFUOc5LroEM5QJDhmhgdKaBIUOSYXR2BZeWlnL4hXj0pRv3P01mSsbD1YawV4Y8PaL8hu+0CycRi3QMZyIWJtAhzoNKYYF8DQrDkCEaGJ1pYMiQZBidXcFNTU3/6cy6dev+w52VK1fyYPFIJM7302QOyz5uZCjHznpcjYYwrB8cz1eRyFDm0EKGZGzZj50hQ8agMw1sJ0Nt+U4ymcx3BddBZ5pwdtanMteP1tvF3cpQjp0pw684RCtDGUbq4nkssbiSIU9PhIJzwzHeddZl6NSpU9K3jHGmScA6Y2VIBEZnGlj+7xmy3wAeoPZehhKxcNp/Mv7hVbAylAuMlSEaGJ1pYLxNJhlGZxpY8m+gzvx9RDm+TSalcxeXoXhEuZUhTZn57MfXIGRIGEZnGhgyJBlGZxo4vytDaXdyc79WcJyVkiGjrEZiWBmSs2U/doYMGYPONDBkSDKMzjSwq86KRMFxVkyGqAMZygWGDNHA6EwDQ4Ykw+hMA0OGpMCQIciQMAwZooHRmQaGDEmG0ZkGRmcpMGQIMiQMQ4ZoYHSmgSFDkmF0poHRWQoMGYIMCcOQIRoYnWlgyJBkGJ1pYHSWAkOGIEPCMGSIBkZnGhgyJBlGZxoYnaXAkCHIkDAMGaKB0ZkGhgxJhtGZBkZnKTBkCDIkDEOGaGB0poEhQ5JhdKaB0VkK7FaGAhnOY89lnB2j4NxwDGSIBkZnGhgyJBlGZxoYnaXAnDagaVo0Gs2brXiZaDTqeOw6mcs4O0bBueEYyBANjM40MGRIMozONDA6S4FTt3l1onKlLjU3HAMZooHRmQaGDEmG0ZkGRmcpsMrmoU4gQ8xAhmhgdKaB7WSoLd9JJpP5ruA66EwTdJYSlc1DneiVPD0RCs4Nx3jXWZehU6dOSd8yxpkmAeuMlSERGJ1pYHSWAitrHvlukRGsDDGDlSEaGJ1pYLxNJhlGZxoYnaXAKpuHOoEMMQMZooHRmQaGDEmG0ZkGRmcpsMrmoU4gQ8xAhmhgdKaBIUOSYXSmgdFZCqyyeagTyBAzkCEaGJ1pYMiQZBidaWB0lgKrbB7qBDLEDGSIBkZnGhgyJBlGZxoYnaXAKpuHOoEMMQMZooHRmQaGDEmG0ZkGRmcpsMrmoU4gQ8xAhmhgdKaBIUOSYXSmgdFZCqyyeagTyBAzkCEaGJ1pYMiQZBidaWB0lgIraB4KBjLEDGSIBkZnGhgyJBlGZxoYnaXAkCGeQIaYgQzRwOhMA0OGJMPoTAOjsxTYYxmKR0LhWCLrA4lY2PRxLR7J+EA8EorEO/47EQt3fi4RC4eskuLlBzLEDGSIBkZnGhgyJBlGZxoYnaXA3q8MxSNGT0nZUSIWztCXlAzFI0bDCcdiBi0yelHWXiBD1DBkiAZGZxoYMiQZRmcaGJ2lwNRvk7Fsxqg/nUbTITdmZcr4cqMAQYbyAEOGaGB0poEhQ5JhdKaB0VkK7KkMZS4KaZrWYTOxtP2k1KZjZShzXShjiSihZckQW4zkBzLEDGSIBkZnGthOhtrynWQyme8KroPONEFnKfF6Zajj6aDMZ31Y2mJ6ZojxuFHH5vInQ56eCAXnhmO866zL0KlTp6RvGeNMk4B1xsqQCIzONDA6S4Gp3ybT4pFQOGwwo06f0ZeEOoQma32oU3SwMuR+y37sjJUhY9CZBsbbZJJhdKaB0VkKTCNDph8Cy9SWzk+mH6wORSIWbmOUIcvnh+QHMsQMZIgGRmcaGDIkGUZnGhidpcDey5BZU1L/znw4Oh4Jx+KdP3FvqTZGAcqAIEN5gCFDNDA608CQIckwOtPA6CwF9lyGsixF95l4JBQy/WKh9D/Nv00o4zOZ76uF0j+QDxmihiFDNDA608CQIckwOtPA6CwF9lqGGJKSiIVTDpOWm6wHqA14tuakf04tHgmFGE9ayw1kiBnIEA2MzjQwZEgyjM40MDpLgT2WobjpNybqazmxToExvFNmKUMmndI3wnrqCCtD1DBkiAZGZxoYMiQZRmcaGJ2lwN7KUKfI6G9pGW0n9U5YJN75hpf5yaKsN8nsF4GYP4ovKZAhZiBDNDA608CQIckwOtPA6CwFpvlpMr8HMsQMZIgGRmcaGDIkGUZnGhidpcCQIZ5AhpiBDNHA6EwDQ4Ykw+hMA6OzFFgdGfruu+9CWfnuu+/y3UvTIEMWgQzRwOhMA0OGJMPoTAOjsxRYHRnSNK2kpMRoQj179sx3o45AhpiBDNHA6EwDQ4Ykw+hMA6OzFFgpGZo1a5ZRhmbNmpXvRh2BDDEDGaKB0ZkGhgxJhtGZBkZnKbBSMrRz506jDO3cuTPfjToCGWIGMkQDozMNDBmSDKMzDYzOUmClZOjevXtFRUV6paKionv37uW7UUcgQ8xAhmhgdKaB7WQoyZe2tjZO0i3sKt7VQGeaGuhMU8MIKyVDmqZVV1frlaqrq/PdJR29kqcnxVUCP591GTp8+LD0LbtK4McZnTmDlSERGJ1pYHSWAqsmQ/X19Xql+vr6fHdJBytDzHjXGStDxqAzDWzTGTIkAqMzDYzOUmDVZOjmzZsFBQUFBQU3b97Md5d0IEPMQIZoYHSmgSFDkmF0poHRWQqsmgxpmjZ16tSpU6fmu0VGIEPMQIZoYHSmgSFDkmF0poHRWQqsoAx98cUXX3zxRb5bZAQyxAxkiAZGZxoYMiQZRmcaGJ2lwAIyFI1GQ/7PqlWr+A9Z/xKti80Nx0CGaGB0poEhQ5JhdKaB0VkKnLrN8ydv/iI1Y8eOdXvIWhebG46BDNHA6EwDQ4Ykw+hMA6OzFDh1m+ePwJcolcbGRsiQFBgyRAOjMw0MGZIMozMNjM5SYMgQTyBDzLjq7CqQIWPQmQaGDEmG0ZkGRmcpMGSIJ5AhZiBDNDA608CQIckwOtPA6CwFhgzxBDLEjKFzIhYOxxKJWDjr4axIvOPz2c9thWOJjC9PbxkyZAw608CQIckwOtPA6CwFhgzxBDLETKpzPKKLjdlptHikQ4b0JGLhjH+nvgAyZBd0poEhQ5JhdKaB0VkKrJQMdd5TvQ1kSBasdzYYjvXKkKZpaTVKqw9kiCfoTANDhiTD6EwDo7MUGDLEE8gQM8lkslNwUm+TWa4MZawKmSUIMmQXdKaBIUOSYXSmgdFZCtxlZejpp5/+gzv6If/xxx+//vor/1e5go8ePerRlj3trA+pwWmsVoYYnzLYU8f/p7Y8YMAAyFAq6EwD28lQW76TTCbzXcF10Jkm6CwlCspQPMJ4h0VidBlCpKTjtAmdqkTCLEOmjZ86dUr6hFfwNegYdKaJTWesDInA6EwDo7MUOH1L447Al3BG16DO+2o8EvJkoUiXoe7du/fnjn7I/fv3Lysr4/8qV3Dfvn092rKnnTvOWedbZUxhyjiJmW+ImWTIWKO6uprzhPr9NegYdKaB8TaZZBidaWB0lgIrJ0OGJYZELOyFDeGZIVlwMpmMR/S1PObKkOmJoaxE4lbPDGGcjUFnGhgyJBlGZxoYnaXAqslQxi3Rm2eIIEOy4M7OuvSk3960WxqyXRki7Cx/y+hsTMA6Q4ZEYHSmgdFZCqyyDGX9Vho5gQzJgjNlSNM0LRGLGU4Ya8Uo6wfOmB/FOBuDzjQwZEgyjM40MDpLgVWTofQyQiIW9uYRasiQLJghQ4mYQWgtZIixYgQZsgs608CQIckwOtPA6CwFVk2GwrF46m7p0Y/ZQ4ZkwdkypCeRfQrT76FlntUUmvlhjLMx6EwDQ4Ykw+hMA6OzFFgpGaIJZEgW7KqzqyjS2Y/jjM7CMGRIMozONDA6S4EhQzyBDDEDGaKB0ZkGhgxJhtGZBkZnKTBkiCeQIWbQmQZGZxoYMiQZRmcaGJ2lwMIy5PdAhnKH0ZkGRmcaGDIkGUZnGhidpcCp2zx/otFo/hxGWlatWsV/yPqXaF1sbjgGnWlgdKaBIUOSYXSmgdFZCpy6zSM2gQwxg840MDrTwJAhyTA608DoLAWGDPEEMsQMOtPA6EwDQ4Ykw+hMA6OzFBgyxBPIEDPoTAOjMw1sJ0Nt+U4ymcx3BddBZ5qgs5RAhniij5KnJ0LBueEYdKYJOtPEpjNWhkRgdKaB0VkKDBniCVaGmEFnGhidaWC8TSYZRmcaGJ2lwJAhnkCGmEFnGhidaWDIkGQYnWlgdJYCQ4Z4AhliBp1pYHSmgSFDkmF0poHRWQoMGeIJZIgZdKaB0ZkGhgxJhtGZBkZnKTBkiCeQIWbQmQZGZxoYMiQZRmcaGJ2lwJAhnkCGmEFnGhidaWDIkGQYnWlgdJYCQ4Z4AhliBp1pYHSmgSFDkmF0poHRWQoMGeIJZIgZdKaB0ZkGhgxJhtGZBkZnKTBkiCeQIWbQmQZGZxoYMiQZRmcaGJ2lwJAhnkCGmEFnGhidaWDIkGQYnWlgdJYCQ4Z4AhliBp1pYHSmgSFDkmF0poHRWQoMGeIJZIgZdKaB0ZkGhgxJhtGZBkZnKTBkiCeQIWbQmQZGZxoYMiQZRmcaGJ2lwJAhnkCGmEFnGhidaWA7GWrLd5LJZL4ruA460wSdpQQyxBN9lDw9EQrODcegM03QmSY2nbEyJAKjMw2MzlJgyBBPsDLEDDrTwOhMA+NtMskwOtPA6CwFhgzxBDLEDDrTwOhMA0OGJMPoTAOjsxQYMsQTyBAz6EwDozMNDBmSDKMzDYzOUmDIEE8gQ8ygMw2MzjQwZEgyjM40MDpLgSFDPIEMMYPONDA608CQIckwOtPA6CwFhgzxBDLEDDrTwOhMA0OGJMPoTAOjsxQYMsQTyBAz6EwDozMNDBmSDKMzDYzOUmDIEE8gQ8ygMw2MzjQwZEgyjM40MDpLgSFDPIEMMYPONDA608CQIckwOtPA6CwFhgzxBDLEDDrTwOhMA0OGJMPoTAOjsxQYMsQTyBAz6EwDozMNDBmSDKMzDYzOUmDIEE8gQ8ygMw2MzjQwZEgyjM40MDpLgSFDPIEMMYPONDA608CQIckwOtPA6CwFhgzxBDLEDDrTwOhMA9vJUJIvbW1tnKRb2FW8q4HONDXQmaaGEYYM8UQfJU9PiqtgPgvDroLOwrCrqN8ZK0MiMDrTwOgsBYYM8QQrQ8ygMw2MzjSwTWfIkAiMzjQwOkuBIUM8gQwxg840MDrTwJAhyTA608DoLAWGDPEEMsQMOtPA6EwDQ4Ykw+hMA6OzFBgyxBPIEDPoTAOjMw0MGZIMozMNjM5SYMgQTyBDzKAzDYzONDBkSDKMzjQwOkuBIUM8gQwxg840MDrTwJAhyTA608DoLAWGDPEEMsQMOtPA6EwDQ4Ykw+hMA6OzFBgyxBPIEDPoTAOjMw0MGZIMozMNjM5SYMgQTyBDzKAzDYzONDBkSDKMzjQwOkuBIUM8gQwxg840MDrTwJAhyTA608DoLAWGDPEEMsQMOtPA6EwDQ4Ykw+hMA6OzFBgyxBPIEDPoTAOjMw0MGZIMozMNjM5SYMgQTyBDzKAzDYzONDBkSDKMzjQwOkuBIUM8gQwxg840MDrTwHYy1JbvJJPJfFdwHXSmCTpLSQjhjqcnQsG54Rh0pgk608SmM1aGRGB0poHRWQocjUbz7Rj+SDQa9fSkKDg3HIPONDA608B4m0wyjM40MDrTwOhMA6MzDYzONHDAOkOGRGB0poHRmQZGZxoYnWlgdKaBA9YZMiQCozMNjM40MDrTwOhMA6MzDRywzpAhERidaWB0poHRmQZGZxoYnWnggHWGDInA6EwDozMNjM40MDrTwOhMAwesM2RIBEZnGhidaWB0poHRmQZGZxo4YJ0hQyIwOtPA6EwDozMNjM40MDrTwAHrDBkSgdGZBkZnGhidaWB0poHRmQYOWGfIkAiMzjQwOtPA6EwDozMNjM40cMA6Q4ZEYHSmgdGZBkZnGhidaWB0poED1hkyJAKjMw2MzjQwOtPA6EwDozMNHLDOkCERGJ1pYHSmgdGZBkZnGhidaeCAdYYMicDoTAOjMw2MzjQwOtPA6EwDB6zzA235TjKZzHcF10FnmqAzTdCZJuhME3SmScA6Y2VIBEZnGhidaWB0poHRmQZGZxo4YJ0hQyIwOtPA6EwDozMNjM40MDrTwAHrDBkSgdGZBkZnGhidaWB0poHRmQYOWGfIkAiMzjQwOtPA6EwDozMNjM40cMA6/z/AJMAEV8QVSQAAAABJRU5ErkJggg==" alt="" />

  所以,当我们通过b去修改里面的空列表的时候,其实就是修改内存中的同一个对象,所以会影响到a。

a = ['scolia', 123, [], ]
b = a[:]
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcgAAAA8CAIAAABtt70GAAAJKUlEQVR4nO2dy5XrKBCGCUshTCImDHUEw86rmQy0NXtHocUoAyehWUgIiioeViO12vf/zj33dKt5FAX8KpBs1AwAAKAp6qcNAACATwPCCgAAjdklrNOz657Td6seteqVGux3y5G4voXnYAfVwA9N6nqZLu/MUZddXZPmJ6j1c/MR1dQhx42WM8fhNeDCukyAL6W+lB4TuV6mu5vAT1a7LOpLv9HPu4bF9OxUT+sKbF77L7ZwL1ebyTW9QxJru/aOtvNk7nUZdxrmuiPltLwzX+ZWnHs1ac4nbHuRtiPqZbpWpb3ViouUfF1iYZ3MvTOveZ7nedTpm0yQbF4TL8NlenbZcTOZZ/DXHYMsmFp2cDf/0TibrSuOWVjLty08kMreWfFhwtaKw5oThiTTs1PiRDrJmbQHj801z++GYz8/ouSW0la09OFxJV+YWFjDQC9oDBsN8Vq7UlijcnYMsjBLnJ14f+duwPctPI5Xbe+siXkIeVBzaEhiB6UHLcTF5zhzXy27bXs3HPvxEVUcLak0Vyv50sTCWt8AqyN/hcvz9Vdtl7jyS6nhsf6w/PPz3Ji7Ul8+ulxX+ouCrHtScZolIYuaDU0QWmh1r9Sgde/KOcNCgpDrbia66UbScN4ZXiRMEITV797QSHOt3fnErhfTueK6FrfTJepSWnfv1PCPuSt177pedcOt61ePbdV5g5lX4zSSPbQHH4lWrFsi21aS0O9V3qBtH7XqtR6U+tJ6SPfpqMk4ZCMzVRcfG9whPM22b7bc58SWRj1Y9IY4es8vOR4Ghdl9si7vF9bZDsFuHZ/zfq1qDZ/h26+9c8Ry3QVlPt7kaeZZXOnbZ6xHsYW9trTkIy2kbMHmVukiPeGmIU8TUS+sqTAhE7ry2keteiWuS3J1reVY7UQz9JgaHvOo15mz/J9af4herVlPCOUkWpEpWe5ltuQnbbd6afhgp9FOOa/G41C6Quvi9nCzxTHWu0Anuc6Tgu6EN3Kj9+SSIypn93nktgLm6ZU1KN9bTvvskF4IZCZ8TguCSeuxOj/HhHKOs1DyVc/uuou45NOEvGp7J971S0lJFElFtadki8VNcV1RVEtqf6y/hv9HRuZtZvfvOMavEF8fBNXXniiHRu6dedLn/hmvvjWQUn/iHVrTg/SisEcs3ZwKo/fckpONys/u88g+vCo9Pg7W2slYRonjwI6JkSRGCiTNZO6bp0r7jJGF/J5/iIUSgSaugujuzH7JzNPE1PWOGCb4mHExdXvcF7fL1y5MbykXrWt63tw9b4ngfMl2UI2Fldszp3uQlUyeB0S5Mr2c93OvTTTAuFd5yTV11Ues4RhbLRRmim8p3yNOeGPOjN4zS+ZUzu7zyLxuVVxzbWttl4UvYO1AQ0uXUo/+ZqVHsg8i7LmEaf79y9/ivqRtRNHCJcG969zOy4EWbtpBIbtd21pvlPZY8y+6lXpHekgd7yqKr22FtQcbW4F/WC45XCW7z3Z2EaIetOpV97fbhVz/DzYW4z164tU4TaIVYQ/Krdj2fIdb1wfv5/WSN8I9VlqO5GerBzu/rA3qivt0NGY0ZBzSkZmyWd5/p13Px48rTehEuQelNHHJidF7WsnyzbJmdp/HNz95xYN2grQ8P5nNwlRI++MWtuXMdwb/xPcTHQ3bXlznpim93VjiY95dvdzsPugjraN/KncN1sfHJMK9loXgz4SNzBq2rckmn4L59VxwduO7AgAAoDEQVgAAaAyEFQAAGgNhBQCAxkBYAQCgMRBWAABoDIQVAAAaA2EFAIDGQFgBAKAxKWG1WvmPLUymU0op5S5ZrRzB96GU0tTk2i50xU+UZC3cfheu0A8Ta/oVIrE9tWmyFgbW+KYFF6MrW9slm3ntCXuIf0oWSuVI/cVy8f5K9WCQK1kyAB+CLKxWB2PeajdJrFb6Efw+W70mK6V5zFYTvRBy2XmeTLfN6ry0Zi2czM1lXmvfqgwm+Dq9g6nN7KlKU7Zwspa3xRrnIOvUl7Y9YTO3ULKH+GePD6VeZrl4f6V6MMiVLBmAj0ESVquV1kG0FUlceMXqzvxXkYb80avoO7nesDCUmE0myBXpZ15OfZqChZKwbiUa1orFq7wVeY+laq+ysLYvkrn4SKjNhQ+7g8+DC+sy1sMYSZt4sbmt5erTBBeDMIzmSkneDgtX3CT20d9kOpUWWamcmjQFC83t5hb18T3A+OCNyyix+ZHwmOB5UvtuH/IeFHJV3MC4PeLYAOBziIXV7SeSBbPfA1x+conchZo0pA6lLc/FYzRx1lVZOLPf3FzubrcuKaxiOTVp8hZ6+QzXwewPzCpq80P2WGwPr32nD1kPSrnKwirYkxkbAHwE/Mwrwu3hN81Sk+cxl9PQGZ7KVbNItEULt3g4WQDZMAyX+TXbBUXpjy3MPFMKHotVbp7UeD5Tu2xhXS+LuQpbAf8JuSrXJQD8YspvBXiFCqIk//DCBZ/5NOThlUsd5ZreeXiVsXCiCjQZE8hE9LgkVtlSxJpKk7dQaDsvmbVdsJnXnranRrPe62Weq/7hldgcVjIAH4IkrP4tn22y0P3BOEFdGh+7hGFaopy8ZhUspFHStskaRXBBKneR2VOTpsZCX070qDyUlbjt0ntUaY+FJQsd9K4PE4WkcuVft4py1ZgHwG8GHxAAAIDGQFgBAKAxEFYAAGgMhBUAABoDYQUAgMZAWAEAoDEQVgAAaAyEFQAAGgNhBQCAxkBYAQCgMRBWAABozGFHswjHirDDSPgBKjiaRfwagExLcTQLANfjoKNZpGNF4sNI4gNUyPfi4WgWHM0CwK/loKNZct+56Q4jEb/XFUezzME3mWb8k7WH1F5lIY5mAaAhBx3NkjoKZQ4iNU/w5aI1X4GMo1m22hO9Ex+Fss+HUS/LuSpuYDiaBfxxHHg0yyok5CgUQVeDAKZKWHE0y1Y7jmYB4JoccjRL5iFK9CCI6gyOZkm03eJoFgB+E8cdzeJDocSyOj5AhSgHjmaRbOa1p+2p0az3epnnwtEsAIgcdTRLxTtANJZJvXIkgqNZcDQLABcGHxAAAIDGQFgBAKAxEFYAAGgMhBUAABoDYQUAgMZAWAEAoDEQVgAAaAyEFQAAGgNhBQCAxkBYAQCgMf8DaQoRQYmYVpAAAAAASUVORK5CYII=" alt="" />

  代码验证无误,所以虽然a和b是两个不同的对象,但是里面的引用都是一样的。这就是所谓新的对象,旧的内容。

  但是,浅拷贝还不仅如此,看下面:

a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print a
print b

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAb0AAABICAIAAADtZLwNAAAHzklEQVR4nO2dy5HrKBSGCYsQJhEThjqCYefNzGSgbbN3FFqMahJwEpqFXjwlUGPZ9+r7qqurrUZwOMDPAUmW+A8AAEoQ7zYAAOAXA90EAChD/AUAACWIAQAASkA3AQDKQDcBAMqooZv9Q8pH/9NcOiUaIVpTwaCAz7fwHEwrKvihSllPLbed2al9V+ekeQe5fq7eo6o65HW95cx++Bp2dXPs319CfAnVpdPcteUGo+ZTxJcqaMZDrd4/pGjcsiybp+bxLTzKpw3UnNZxEisztY4yQ6/veSceNGxujpTTtp351LfdoZWT5nzsuu9St0c9tayVW1EtPiTn89jRzV7fpX4OwzAMnUpPEVayYUo89ob+ITe7Ra8f1n8P9CFr5Jh2nro7Pdts5uwCC3P5sYUvJLN1JtZJfqnFy6pjBxT9Q4roODnJmW4LvvasYSgNpt7fo+I1dWtR04evy/lEdnTTDtMsW4PG9hfCmbrp5XOgD9mn+Kc7zj24VP+5ha/jmds6U+IwAHxRddyAwrRCtSoS1Z7jzGOlHLatNJh6e4/a7S2pNJ+W86ns6Ga+fUZ57rDXztNHZcao8EuI9nv6Y/xZh7HWdyG+1thwWoaPAjHtB/lpxoRBzKvdBLaFRjVCtEo1cz5nWOgQOeuue3fDy0kTUtJ7nEk+opvr1oobJ06lzz4x08H0WX5Zo9vd9eOYm7xL0f6t70LcpWyEbG+ymTy2FLcaHHjVTxOzx23B70Qtpv2KZZ8n0u5Z3nDr3inRKNUK8aVUm27TTjn9MOiZqbLCvhE6JEyzbGqN01i0pl4L7noj2nvPz9nvBjuj+4eyW003B9NaO2XhkF4XkkaHA3j52Mz1HI/PIdUaLYZphiG6DDcPX258Cxtl3JxfaaHLEiouhY7KYm/YhWk88nUzNclvBJ5h6Z0SjYiuKrbKmvIxatZE22Oi/R46NQ2M8Xdq9RD1as5qIJJPohYbOcdbOViPO3U3aqx4a/rO9Fte9fth7IhbVmhPaHa0jzVzHJNcpcVC5oQ3tnrvyTl7ZI7u4xSs04f+uVnedmPM0mbadJS+MZ63hro1JleM2h5CkXxeZ2HMV00wZ47asZ3G5pnbOv6OW0opvDjIKz2lSkHU45flxaRO6d/TR/u3Z+S2zcH07EfoGdq6hjD5pSfyceNuqR/uFfMNrxZ1pNS/wgbNaUH3YGR/Njb37PTec3NOVmp7dB+n5LrQ3oVXayGcjEREtJlNl+go0XneSdPr++KIvT0+z8Jwxn6JhTEsyZv0bp5X1/VsmMYnr3Wik/wa8Y2mLlfS/HqtpUdGb+wst6z+cZuntDH+WnM2raism6E9Q7oFg5ydvXjvrI1W3vZzo7TXwUKvhjnnlJUfb9p9bLIwMlLWmob7swlvDBu998ycQzJH93Hy70PaXRAtC+H5lHB1aVo3MJxTqm6dalTn7EFE9jvsNP/8sU5QX7EtvKiFY4K7lPOuxwstXKTBxdlpWhZiXWx/c/sOsL3WiV3e9Xf0ovcz2aVbm0qWf4Kz4sGms/Nrhjm+U60SjZB/zjuA029rU8/fH3e86qdJ1MJuwXgtlv3W9iYb68a1JuYNe3/TzSfmZ6NaMzyNscry27TTutNOP3R7Zsrm+N632/Rh/5lzizRivAVjafycE733tJzjc2HO6D5O3eeFwojaIbZ2PpnFwlRA+nYL63LmvXK/w315R6lY991FaJq92/72+G3u2Xz56D7nOctuvZ71GUwXXp349LMshGsS9Mwclm3BKg93/PKcMLp5Ph0AoAx0EwCgDHQTAKAMdBMAoAx0EwCgDHQTAKAMdBMAoIws3TRKCCGEkLofP73xNsf3lh7H8U+v5fjJevzTPwIAvzJ5uqndb3OXFe6uncXE05JdWaxTel1c/4z0Wpu9IwDwS1Kqm72WFXUrVMle3zay/1HpRlllLTHgotxz0HggLkQ3AS7FgXizImctuidNtFbOizobJYT6tsPYXstCq9BNgEtxDd30y0r9fdAodBPgUtTRzXWN60Rt0csj9kLblSg/Koxnc5S4HLorf6MOlYRuAlyKKroZ26ac1rrLv2aBcoQqPNE7snz8eWQaySG+XUq8CQCb1Fqnj7GitHYNU4K4uUaOrpoPXq0JLXS/w1SJxDWmYuFENwEuRZ14c/6/HV0uf+kK8ebWtZpMmXOS9Vpa+wfauS60CmqugKKbAJeiim6GN/X498pbqaYD1jmWTIWx5RTI3m5SJOLDjDs6/Zytz/bt/GEd8u56QjcBLsWB54U+irr3kx7MmeeFAC4Fz6cDAJSBbgIAlIFuAgCUgW4CAJSBbgIAlIFuAgCUgW4CAJSBbgIAlMF7MirAfe8Al4L3ZFSA5ywBLsVV3pOREwUejgvRTYBLcY3vew+/4ijnSH726CbAlbiCboZRas6RAtBNgEtxhfdkGCWUdvLJOVJSALoJcCWu8J4Mo+xv/ZT634wjRaEnuglwKa7wngz7y92NEuo74wj7mwCQ4hLvyVgv+cyl5xzhPRkAEOUa78lYSwv3XzeO8J4MAIjAezIq5MzzQgCXgufTAQDKQDcBAMpANwEAykA3AQDKQDcBAMpANwEAykA3AQDKQDcBAMpANwEAykA3AQDKQDcBAMpANwEAykA3AQDKQDcBAMpANwEAykA3AQDKQDcBAMr4H+owMUOiDUunAAAAAElFTkSuQmCC" alt="" />

  这又是怎么回事呢?

  看过我在python变量赋值说明的同学会知道:对于字符串、数字等不可变的数据类型,修改就相当于重新赋值。在这里就相当于刷新引用。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApwAAAFtCAIAAAAlDy3TAAAgAElEQVR4nO29eZgUVZ/nW9Pv3Dvzdt97587a9965PT3dT9/pO90zz503CxQUeVnEhUUoUhAQpOsF1FJAIEGgECgKWQQsNVWQXQqRpYBKqkBkEdBi8YVCUgQstoZqWQW0LLZi89w/IjMyMuLEmid+EVHx/T4+j1TmN09848SJ84kT28lr9KvOnz/vdQTbQmYaITONkJlGyEyjkGTOYxo1NjZqP9STe+bz58/7IQYy08RAZpoYyEwTA5lpYiCztmRAXaQZmWnMyExjRmYaMzLTmEOSGVAXaUZmGjMy05iRmcaMzDTmkGQG1EWakZnGjMw0ZmSmMSMzjTkkmQF1kWZkpjEjM40ZmWnMyExjDklmQF2kGZlpzMhMY0ZmGjMy05hDkhlQF2lGZhozMtOYkZnGjMw05pBkBtRFmpGZxozMNGZkpjEjM405JJkBdZFmZKYxIzONGZlpzMhMYw5JZkBdpBmZaczITGNGZhozMtOYQ5IZUBdpRmYaMzLTmJGZxozMNOaQZAbURZqRmcaMzDRmZKYxIzONOSSZAXWRZmSmMSMzjRmZaczITGMOSWZAXaQZmWnMyExjRmYaMzLTmEOSOa/RrzofjmnyPBcy0wiZaYTMNEJmGjnIjJG6SDMy05iRmcaMzDRmZKYxhyQzoC7SjMw0ZmSmMSMzjRmZacwhyQyoizQjM40ZmWnMyExjRmYac0gyA+oizchMY0ZmGjMy05iRmcYcksyAukgzMtOYkZnGjMw0ZmSmMYckM6Au0ozMNGZkpjEjM40ZmWnMIckMqIs0IzONGZlpzMhMY0ZmGnNIMgPqIs3ITGNGZhozMtOYkZnGHJLMgLpIMzLTmJGZxozMNGZkpjGHJDOgLtKMzDRmZKYxIzONGZlpzCHJDKiLNCMzjRmZaczITGNGZhpzSDID6iLNyExjRmYaMzLTmJGZxhySzIC6SDMy05iRmcaMzDRmZKYxhyQzoC7SjMw0ZmSmMSMzjRmZacwhyZx3XqPGxkbth3pyz2xLyOzYbEvI7NhsS8js2GxLyOzYbEvI7NhsS1LJGKmLNCMzjRmZaczITGNGZhpzSDID6iLNyExjRmYaMzLTmJGZxhySzIC6SDMy05iRmcaMzDRmZKYxhyQzoC7SjMw0ZmSmMSMzjRmZacwhyQyoizQjM40ZmWnMyExjRmYac0gyA+oizcgsxFxcXByBLKi4uNjVjeLDtmEqZKYxIzONGVD32IzMQsxeszJIcnWj+LBtmAqZaczITGMG1D02I7MQs4wryECAOlfITGNGZhozoO6xGZmFmAF1KwLUuUJmGjMy05gBdY/NyCzEDKhbEaDOFTLTmJGZxgyoe2xGZiFmQN2KAHWukJnGjMw0ZkDdYzMyCzED6lYEqHOFzDRmZKYxA+oem5FZiBlQtyJAnStkpjEjM40ZUPfYjMxCzIC6FQHqXCEzjRmZacxOoN7oV50/f97rCLaFzEIEqFuRVEuubggftg1jjRkzJucn/73UmDFjvK5Cqwpc22gMTWaM1EWakVmIWergrP82nJJrKVRtw1je4ViYvKo6u+bAtQ0WmsyAukgzMgsxW+zdQi65lkLVNowV6JYDqLttDklmQF2kGZmFmAPdNZMJUNcq0C0HUHfbHJLMgLpIMzILMQe6ayYToK5VoFsOoO62OSSZAXWRZmQWYg5010wmQF2rQLccQN1tc0gyA+oizcgsxKzq3TATqyxprlVVLYWqbRhLrpMgymJ4P9QzC2DbYKHJDKiLNCOzELOqd6Nnp5+lraVQtQ1jqaooWLIY3g/1zALYNlhoMgPqIs3ILMSsR6+QC1A3VaCbCqDutjkkmQF1kWZkFmIG1LkC1E0V6KYCqLttDklmQF2kGZmFmAF1rgB1UwW6qQDqbptDkhlQF2lGZiFmQJ0rQN1UgW4qgLrb5pBkBtRFmpFZiBlQ5wpQN1Wgmwqg7rY5JJkBdZFmZBZiBtS5cgb169evK/8MetswVqCbCqDutjkkmQF1kWZktmKuqKg4e/asgRlQ58oW1Ovr61esWPHKK6/8+OOPys993jZyNAe6qQDqbptDkhlTr4oUMltR//79I5FI9+7dS0tLN23adOnSJZXBRagnYpFYIvdikvFoqpxkPBqJxpPuL1IH6qqq271795w5c3r37h1J64cffnC8pQLXnpsB1L2uQqsKXNtoDE1mjNRFmpHZirmoqCiSrSFDhnzwwQfffvutZHAP6qIAawPqwpiuWy0//vjjtm3bSkpKHn/88YhGN27cUBbi87aRo7kZQN3U5od6ZgFsGyw0mT2AOt76mbuUrwvNcaPQN/RRo0bprVf79u3Hjh0biUTy8/Nlv/SV9eXqSxhgM1C34BTEdD7Uhw0bZtxUmpqalIX4vG3kaLbeVCh7IeO91W54P9QzC2DbYKHJ7AHUyfal5i1RG4W4of/000+vvfaalRXs2rXrrFmzvvzyS9P1daRkPCoVrBhny59liJ35SOnUG6knYlqvMEkFf/vtt3Pnzu3Xr5/FdlJaWjp79uwFCxasWbNmy5YtO3bsqKuru3Tp0u3bt02XGLhO0HpTsVh7oiQwvB/qmQWwbbDQZPYM6tZ/BalkWoE+aeh1dXW7d+9euXLlzJkzi4qKunbt2qJFC1tdYb9+/crLy91oMImYDO5kPJ5IfyTDPBGPJ1NEl/meiMms5kM9EZN/HnMB61I97N27d+rUqe3atcudNI888sjTTz/dt2/foqKicePGzZgxY+HChdXV1fv376+vr79z507gOkHrTYWsFxIeyQ/1zEIDSM/NgHooZFqBnjT0+/fvf/fdd2vWrJkyZUqfPn0efvhhLkjat2/fvn17K8g5fPiwVLIbDUZL3URMg2EF+VUe02vqnNJylqoepD8feughgzps2bLlunXrVqxYMXfu3OnTp48dO3bw4MF9+vR5+umnW7dubboJOnbsOGDAgNGjR8+ePbu8vHzr1q2HDx9W3U4vyw+doPWm4kajynFBFp1+qGcWGkB6bgbUQyHTCiRr6JcuXaqurp42bVr//v3z8/NVSHjqqadefvnl6dOnf/LJJzU1NfX19ffu3WOMzZ8/X48iI0eO3LJlC5de1kNak3xePQNn9cVvDZllyuuN1LNWRtS19LS41dLU1LR27dqRI0dy67NNmzaqQpRb8NatWxcvXvz++++//vrrzz//fPXq1fF4fMKECYMHD+7WrVvLli31NtOjjz7au3fvkSNHlpWVrV69evfu3WfPnv3555+trwug7tgZXNh4bg5JZkA9eDKtQFcbTVNTU01Nzdtvv92nTx9VX9+rV6/JkyevWrXq22+/vXXrll4M+Yy6rOeee27+/PmXLl3irqCrDSY9ZOeNuO2N1LPcmp8KkF61SPX8888/V1RUvPzyy8qKbdeunaoQW23j8OHDhw8f3rp1a3l5+ezZs0ePHj1gwADuPfaSunbtWlRU9Oabby5dunTbtm3Hjh3TWxyg7tgZXNh4bg5JZkA9ePIE6t99993ixYuHDBmi7MQfffTRESNGfPLJJwcPHrx165bFGBUVFdLP27ZtO3369EOHDqnM7kM9GY+lAS6DOuuMvN41dfk6vCHUpbMAtFCXdeHCheXLlw8cODASiTz++OOqQoS0jevXr9fV1W3btu3jjz+eNm2adMOEHuk7dOgwYMCA4uLiDz/8MJFI1NbWXrx4EVB37AwubDw3hyQzoB48kUH9hx9+WLdu3bhx4zp06KDspgsLC+fOnVtbW2tcsl6MTZs2DR8+/LPPPvv111+5ZvehrnOfeuZD7t3vGUqbnH6PxuPkI3WtTp8+vWDBAtWH7nUoDQ0N9fX1e/bsWb16dVlZ2ahRo5577rlHH32US/pWrVpFo9GioqIpU6bMmzdv/fr1e/bsOXXqlOqltnYzuwh1RUOwtWEBdVdjILO2ZEA9eHIb6keOHJk7d+5zzz2n7IULCgqmT59eXV3d0NBgsWS9GOfOnTM2U0A9gLILda7oO8ErV64kk8mNGzfOnz9/0qRJhYWFTzzxBJf0ktq2bdurV6+hQ4dOnTp1wYIFlZWVmzdv/vbbb3/44YebN28aZ3AN6orTMDafbADUXY2BzNqSAfXgySWof/PNN++8806PHj3k7rVdu3ZjxoypqKior693ULJjM6DOVUChztWPP/546tSpPXv2rF+/ft68eSUlJa+88krPnj3btGljwPtIJNK6desuXbr07dv3xRdfjMViJSUlb7/99oIFCz799NMNGzZInn379iWTybq6ujNnzly8ePHy5ctXr179+eeff/nllxs3bty6devOnTu2GlX2DRfmbwZWClB3NQYya0sG1IMnsVDfuHHjzJkzn376abnffPrpp2fOnLlv374cSwbUxao5Qd3A/Msvvxw/frympqaiouLDDz+cMmXKq6+++sILL3Tt2tUU+XZlMa3qMQhbd0EC6q7GQGZtyYB68CQE6jt37pwyZYryYnmPHj3KysoOHjyYY8m5mwF1rkICdWPzrVu3zp8///333+/fv/+LL75IJBLLly+fN2/erFmzSkpKpDp55ZVXCgsL+/btW1BQ0Llz56eeeqpTp04dOnRo167dY4899uijj7Zq1cpOo1IPza2/JJgB6i7HQGZtyYB68OQY6jdv3ty8efP48eOVty/17Nlz7ty5R44csbJoQN1DAeqmEk5QxhigzlXg2gYLTWYPpl6l7KN9OG1D7pIWZ73C6+vrV65cOWzYMOX7YZ5//vm5c+d+++23PpyOUNVCyLZgIOS4GTiQD9uGsVRVZLoTWdzjKE+/e12FVhW4ttEYmszNfKRO1tXSr5SBQarnc+fOrVy5UjXP6YsvvrhixYoffvhBNvvw6FW1gpjWT5bywFH6xNWN4sO2YSy5TgQ6Ge9GOetPtQmP5Id6ZgFsGyw0mUMB9ea0INNlnTp1at68ef/wD/+ghMFrr722bt26K1euaP0+bOiUlRlcAepauQT1rLcQ2XxZIKDuagxk1pYMqAdsQdxlNTQ0bNu2bebMmc8++6wM8tatW48dO/azzz67ceOGQWk+bOiAuhUB6lq5BXXGfTGRN5H8UM8sgG2DhSYzoB6wBcnLunfv3r59++Lx+AsvvKAclLdv337ChAk7duy4f/++ldJ82NABdSsC1LVyEepOBai7GgOZtSUD6gFb0OHDh6VlKSfRys/Pf/nllxctWpRMJlnwGzqgbkWAulaAOpk5cG2DhSYzoO73Bd25cyeZTK5evXrMmDHt2rVTDsoHDBjw3nvv7dmz5+7du8qfBL2hA+pWBKhrBaiTmQPXNlhoMgPq2XJ/2gZT3b59+9ChQytXrpw8ebLqBeyRSKSgoED6h8H01UFv6IC6FQHqWtklKJkEhvdDPbMAtg0WmsyAulIU0zYodffu3dOnT+/atau8vHzatGkvvfSS8nWtsvr27VtSUlJZWSk9ima6rKA3dMoWElzJteSrDsVbs/WW48M3WFgM74d6ZgFsGyw0mQH1jHKftqGxsfHatWsXL148e/bsyZMnjx49mkwm//jHP3711VeVlZVLliyZM2dOcXHxyy+/3Lt3706dOnG7gIceeuj5558vLS2tqKg4fPiw6tS6lZUKekOnbCEQ5BMB6m6bQ5IZUM8o9/dG2VV+fn5BQcGwYcNmz569atWqvXv3Kl8L43ilgt7QAXUohALU3TaHJDOgLkvAG55///vfd+rUqXPnzj169OjVq1f//v0LCwtfeumlYcOGlZSUxOPx5cuXf/bZZ19//fXx48evXr364MED++sEqEMpJePRdItNxFL/Ul03UtwkEolEYrFYRKNMI09wvs326DsykpeefZScCZuIqZbKdRkrEePvnJq9Vs/oPwHqbptDkhlQl0U0bUPuAtTDIiWROU1RAcBsFnKacoan2QVlfaADQCMu6l+lSv0qGY9KP86sjH6C7EOQtDXrU2lhBkzPSmP1GMEPAtTdNockM6CeEc20DbkLUA+HZBwy/n2bSmBljXZ5JamgLpethrqO9HYEveUqs6f+rcPXRCwSS0gWCd6SSfliVu3ytEGj8aTqiCC1TEur4QsB6m6bQ5IZUM+IZtqG3AWoh1Cc5mjlVLg8SLYKdVsj9WQ8Fo3yTyFwmZu1d8lDbum7WCwmf6LP30RMXVImnPJjaf2yg/v9RDyg7rY5JJnzzmvU2Nio/VBPDsy+4l+WSKZtyF3SskRtFFtyu21I8gPUD7Dz09hXBv8dYDZ2ttxl2B6V42LeDzNojQscqSfjsXjCYMnqgNmoj8aTqT0uBfVEFs/lKNmj+0QsGo/HFB/rXIKQjhKCdXXddL+m3AfFCpkdm21JKhkj9Wy5P21D7jJdVtCPXv0AdcbYU2x5Ppvv1X9ZUYzfmqAdGKtoqB2py4BzTDrpRLg8IlalU0XSyZ6IRaLRqDxSV96Op74ynikqFovJxyZZ+bUjdcYb0+e4XWpYvZPqsiCLzT64I0jPzSHJDKgHbEFWlhX0hu4TqM9gNX6AukQ0A/JKo1f1oNTwRjku5U3FOXsuDcGTSXXIrHMHMv+VzI3EEsl4PCF9mrFz1zbzdSJzjj774IRpDiQ0p9zEQP0jdsCo0eQgYqhTvn4HkiS9hghQz0lky/LVSgHqQrSX/aDXs+9l5q8TECFToMt8TcZj+reDaBguITz1L72r1wZ3xylHx6qz94r73DJSQF21SkqoK85HJJSn2HmXF6TDlqyQnJF6Vl7jmwnN9RE70Jyg7h66IAPZ3YKAulpky/LVSgHqotSBLdMSvT37mGbpVu7r0N4nxvlVMh6NxhPyfaDJeDSiueKcVQbjDN0zD6Zln9jPLiV1QMEfqUcimjPx6pG6EvrZ5wPSZWU9Ms8/H8G/ywBQd7I4SJQAdTESeoxlLsqVMjAA6qJUyr7UQr2UfUmxbJ0nwLOe9VINp3UG9tn3k6egn1Bclk4txqhoeQHZkfRu0dMfqasKUp+UzxrpxxLSXMKK++iy2a9z5wA3V86PrAPqUC6SKxxQz0k+nLYhd5lWIKAuSl+ys1qof8nOUiybc/ub/Oi1/E4W1Zve5FPrWReas+4VU11hVo/w5VPg1u6gM4C60TV17dJZxiyvic5nykMXxXGAzjV1ZSGAuv3FQaIkVzigDqkFqFPqMbZESfTH2BKvE0lK0VDnqe7Ux+o3JKoe205Jujid+U7vpjn+eQMjqKc5y7kXT/NwecrLf+w966IAb2VVj68rH9nTxbxNAepQLgLUIV0B6pSayHYooT6R7fA6EeSNAHUoFwHqkK4AdUp9wf5RCfUv2D96nQjyRoA6lIsAdUhXgDql7rNfW7NFEtFbs0X32a9eJ0rJWR8R9LZhLFdbDqCur8xVIMVr/DXPReg+WWH5XQnqCQUyi7f4YkP91yDx7i/VL5R7HchYgDqkK0CdWOPYNgnq49g2r7NkBKhrBahbN9uqK/3ZeCRxnmtQP1yZ9UVWYRx6al83ZJBHfTCQNYeA4mCAtxJWXrrEm0opNY2xHawD6iLl9j3wZPe9SzKtwKB33PQtxFib2UkJ6pvZSa+zZOSsjwh62zCWqy0nrFDnv2Ag26D4UkthzWMJOiN1nfcdZ6S8DzIaT0pLyrxISe91yqq7NjWLZbZG6oqTEDpPnerI2Q4LqPNl2FDEiH51DAxB77jpq9RYt9jdFmxBC7bgFrvrdZaMnPURQW8bxnK15YQS6pm3GnBhaaFrVD1wKHGYP1LPehSC8xYFxdQ9UqhoLBaVH++M6B14yO8rVL3HULWaHPFf+aB+NYRFrjvbYQF1vlxdog9XJ+gdt9+gzhiLsS0xtsXrFFkC1LUC1K2bbdWV4UP+6pE6961FsVgsmn7uMK4/UrcC9TRZNW8qzBxlqN+SHItnvZdJk9HCSF3/lc0Wr6/TQb2RXD6koG8LN1iiqM0hTdjnK/kQ6lWsrorVeZ0iS2KbAVc+bBvGagZQ92dd2YB61jt9FRP9Wrimbun0ezIejUYVI3XV8D2r2MxBQywWiysPGVRrYzZS17x7mTuRoDHYnW1fB/sgRuq+LtzZEm1tFB+OxkxX0IMJptq1jrRrTbzMmpoag0qQPLnUs6l82DaMJdeJG8JIXedLJYvlAXTW9HipS9omd79bW14inp7IJ3NsoJkHQPpQNexPJ+DcMKd8aTJnVl+bFcKXsx0Wp9/5cnWJPlydoHfcpisogpgB0EcffWRaCbnUs6l82DaMJdeJGwLUVR8qYK6eWCca1Zm6J1UaZ6Ru5wq9Auqq+9ayRte8O/ayThnw19TKLe2AepbZ1R2PK1eX6MPVCXrHbbqC9HVOrI8++ghQd2AG1K2bc4d6WipKKs9EZ+bbVfwvuzD1m4Y1p9E596KpR+rKobpM5czXmXmJNRfGLR1KcCgPqGeZfUhBlWzN5+TD1Ql6xw2oA+rOzIC6dXMOUFc9OaZ+f7/iSrc8CNfMpZuefEj6WvHQeTwWS3NWmi+YQ0/lcDp7kiJpFoCkRPf0zXPZ7OdTOl1sLBaJRvkTGuhXiCUB6iJlZ4mmD2XmUrgYAeqAOgPUeQLUrZtFQz3rHvDUBXXl8+RMO1pSQl5nSiL+WFl9jpzXa6s+U152196unnnYPX0SwID92gqxJEBdpCwv0eihzJwLFyZAHVBngDpPgLp1s4i64sxqL0viYvY3mpPdurerax85UxaWdTeb/vKVc/Xy3wqXfg+Ocp5g7XSFOP1uZvYhBVUC1IWUbN28c+fOo0ePyn8C6oC6MzOgbt3c7HcivwlQFykCqLdo0aJly5YPPfTQww8/3Lp169atWz/yyCOPPvpomzZt2rZt2759+8cff/ypp57q0qVLt27dCgoKnn322eeee27AgAGFhYUvvfTS0KFDR44c+frrr0+YMGHKlCkzZ84sKyubO3fuokWLli9fvmbNmg0bNmzZsuWrr76qra2Vlnjx4sWGhoY7d+5oIwWu496xY0ckEnnhhReWLl169uxZT6GuuaFC9cAO5+Mc5+nmyC7UDx06NG/evFOnTpmWHLi2YcsMqHPNF9n1bez0O2zfYFb1HKvozFY8xpb+6bERgDqlAHWRIoC6h2rZsmXbtm2feuqpgoKCvn37Dho0qKioaNy4caWlpWVlZfPnz1++fHllZeWWLVt2796dTCZPnDhx/vz5hoaGe/fuMX903Nu3b9euV319vZ5fMlhPYlWcS3PKq32KS4mZ+2m176UQIOtQf+ONNzp27Cj9+9y5c6YlA+qOFTioH2IXR9/Z/DcsnsdKtP/9s7uT3KsrSCt5+wLqAmR3iQ6g/uDBg/v379+7d+/u3btNTU1NTU23b9++devWjRs3rl+/3tDQcO3atcuXL1+4cOHcuXP19fWnT58+fvz4kSNHksnkgQMH9uzZs2vXru3bt3/22WeJRGLNmjXl5eWLFi368MMPy8rKZsyYUVJSMnbs2OHDhw8ZMkRa4tNPP92uXbtWrVrlckDQunXrjh079ujRo1+/fkOGDBk5cuSECROmT58ej8cXLVq0cuXK6urqL7744uuvvz58+PDJkydPnDhx7dq127dvW6kZ621j27ZtcqT8/Hz539LYXUt3V5qQhRsqNE/bpD+0e3nNTAZQP3z48IIFCwoLC7Vb88qVK6YlA+qOFRSon2U/z2J7WrKFMr//NZv5GFtSxDZ+yPavYkc2sRM1rP6vR3UG1CkFqIsUAdQd5XIo1RLv3bvX2Nh4+fLls2fPfv/99wcPHty6deuWLVvWr19fXl7+0Ucfvf3226WlpWPHjh02bFhhYWHv3r27du3arl27hx56yPHRQIsWLdq0afPEE0907969b9++hYWFr7766ujRoydNmjR16tRZs2a9884777777qJFi8rLy1etWrV+/fqNGzdu27Zt165d+/btO3jw4HfffVdXV3fq1KkzZ86sXLlSuwgl3QcMGLBw4cKzZ8+6X+dGG583KOeCPlepoN7Q0LB58+ZJkyZ16tTJYKNY2RkBdcfyP9QT7Psn2HKZ5f+OzRp8t3InO5PL4vyi7BvebT117BPJFQ6oC5DdJQYL6lpZ3yi3b98+evRofX39sWPHamtrd+3atWnTpjVr1ixduvSDDz546623Jk2aFIvFioqKBg4c2Lt37y5dunTs2PGRRx6xdQQgUAMHDly6dKnEexF1qZX+xs9+kMfoxt+cJUG9tLR04cKFgwYNslg5Gzdu3Lt373fffXf58mW9kgF1x/Iz1JPsUgFbJbH8N6y0L1u3nn2vZ7a1OJ8oEeNO2ZpSIAAvVzigLkB2lxgeqDOnHfeDBw9u3Lhx5cqV+vr6urq6Q4cO7dmzZ/v27dXV1evWrVu5cuWyZcs++OAD6fLBW2+9VVpaOnHixNdff33EiBGvvPLK4MGDBwwY0Ldv3169evXs2fPxxx+3yK2XXnppxYoVbtY5f+PrT9FkYSYH+5KgXlxcPHHixIcffthi5SjVunXrXr16vfbaa7Nnz16xYsXOnTtPnjx58+ZNQN2x/An1n9ntkexzCef/C5s+m+25zu7omR0szh/iPJgeCJArBaiLlKtL9OHqBK7j3rRpkwGf8vPzR44cWVlZefXqVclPC3V9oGe+F9zDKE+/NzU1lZWVKcfrygsTslq2bDlu3LiioqL+/fsbHCQ9/vjjhYWFEyZMmDdv3oYNGw4dOtTU1KQXww9tw5Y5bFB/j339b9hbEtFfZZt+ZDcNzM4W5wfJl7j4L3UV//SJK6KDeiO5fEhB3xZusERRm8MP02tWVFRod9U2bdpMmDBhy5Yt2vvyKKFufnO7C1fVuTfKXbhw4eOPP+7Xrx+X1u3atVNW6aVLl7755ptNmzYtWrRo6tSpRUVFBQUFerdV9urVa8KECcuWLdu3b9+1a9fkQvzQNmypGUDd4pomb/zT4/c+lnD+5L1lu26e9FVdCVXmBXCG86v5Xc76bUy9ylezhLqBwdZG8cNorKqqSgbMk08+aWUkFPMAACAASURBVLqCdFDXGYUrnmhz8fS73iNtR44cKSsrU4H56aeftlLyqVOnDh48WF1dPW/evIkTJ3IPEfr27VtaWrpmzZpdu3Y9ePDAYma3+w0ragZQN7U1NjYuYYf+lE3LYyV/wd5Zw44am3NcnOfKzJ+OkbqZGnH63f+FO1ti4KCeSCS6d+9eVlZWW1vLPH6jnBbq3C7E1XfP2HhOfdKkSdJF9+7du1spWbtR7t69e/jw4dWrV0+ZMqVPnz6qtc3Pz+/fv/+0adOqq6uNn4MH1HOUlfA32J3+dyukAXo/tu4nZvJwaTOAemb+9GYxUmeAuhBxDu5Ei351DAyBg/qxY8eUZtMVDEp/5Fi23ih35cqVqqqqoUOHWinZdKM0NTUlk8mVK1dOmjSpoKBA1c67du36xhtvrF279vTp03ZLJjDbbRjFxcWudgvFxcXWw5iG/5ydkt4k8xs2ZZ61Y4tmAHXGMuTGSN1YIYK6r3bd3GVagYGDuspsuoJB6o8cyT/vfr958+bBgwfLy8tHjRrVoUMHZbPv1KnTmDFjPvnkkyNHjrgawz2ou9otOAuj9+1EtkMaoD92f/ER9qPFMpsf1DFSN1CIoN7MZFqBgHrQ5R+oqz45ceLEmjVrxo8f37lzZyW62rRpU1RUtGjRotra2vv374uN4TbUrfttSVSYOnalI1smEf0NtkNU1QVpJ8JI3ZoA9aAKUG/2Tci3UFeqvr6+qqqqtLS0Z8+eyj62RYsWgwcPfv/992tqavQWB6hr9Xe9fq/1L2GHfsvezGMlf83e28xOMnFVF6SdCCN1awLUgypAnXO03hzlc6grdfny5Q0bNsyaNUt7O32/fv1mzZq1ZcuWS5cuOYvR7KH+I7v5Gtv8z3+ZoPSfZ42D2AZpgN6frf+FpV4nEFqo675PLhKMV8o522EB9VDItAKbPdTdvknCJ6qpqTGoBMmTSz2bylnbaGxsrKmpef/99wcPHtyiRQvlGvXo0aOkpCSRSBw8eNCNzHKduOS3JYuFT2NfSc+n5bGSv+/WRvrwbbb3z9j0PFbyJ2zK3Ox74sII9WYhZzssoJ6RV/0+wU1zphXY7KEOMR9DXan79+/X1tYuXrx4+PDhbdu2Ve4prVq1Gjhw4IwZMyorK48dO/brr7/mntluy3G1pZkWvoDV/mf2rnI61L+OdfmcnWrJFkh/9mJr6thV1a8A9YDK2Q4LqGfkBrAtimbVDAyAehgk15Kfoa7S0aNHP/300/Hjx3fv3l2117Rs2XLAgAHTpk1bu3btkSNHlHfb+Qfqtl45blB4gtU9pJgaVf7vt3UjpX/8HftwHTvG/S2gHlA522EB9Yw8abI+WTVAPQwKItSV5sbGxv379y9fvnzChAnRqPqu5hYtWjz//PMlJSVLly6trq4+efKkwTvqZbkJ9dSd1zlCfS/7oQtbIZH7T9gULdfzWEkp+9KgWEA9oALUcxWgblGAekAVdKirPrlx40Ztbe2KFSsmTpzYq1evCE/dunV75ZVX3nrrrSVLlmzatOnAgQP19fVK2LsG9dQMALnM33iSXStkCWOc/+bmxJPsmnGxgHpABajnKkDdogD1gKqZQV2lW7duHTp0aO3atWVlZUOHDu3Zs6fqnjulOnTo0Ldv31dffTUSieTn57///vvLli2rrKzcvn37/v37jxw5UldXd+rUqfr6+vPnz//4448//fTT9evXb9++bbelOYP6L6xpLNvGpbj2P+1MayoB6gEVoJ6rAHWLAtQDquYNda35119/PXv27FdfffXpp5++++67xcXFgwYN6tatm/F88/+tS5v/Z0inv5zS4/9Y2O/ffDbkX31V9L/uH/pn373221Oxf3Hu9f/77V5uQ/1ttleeHdXKf1uZ+v273NqwKFOoQ8SyuwUx9WpGNEvxZKHSUkRtDh9Or+nJtgucxDYDrnzYNrg6e/ZsbW3t9u3bI5HIf3+89dBtH3TcP+M/ny35zb3JxgT9D8sH2GppDqB+h90/zq5uYafms9rnWEVHtuy/s3l/zuboRXqzaQdNpY0ZM8Z9hEFZGjNmjN3NhKlXM6JZiicLNV2KrY3iq9GYJE+2XeAk15J7G8WHbUNPB9j5N9iO354YpWLkf2RlbdiSF1jlZLbzY3aomh3/gv3j1+zcYXbpNPvJbkvL5Zq6SjfZ3aPsx43s+Ads/2i29Vm25k+PjfjnDcXPs3XGxXpbz7IC1DZkhSQzoB68hQLqEAPUGWOMHWE/jmFb/5Z9IFP8T25P7MiWTWBfbGQnrrJbxiV7CHU9f0MOs6lSmv3fNrQKSWZAPUvKCQMcvFHYJ6sW9IYOqFtRyKH+NTv3PFunGJG//Qrb9DevPOmAo9b9BFA3tQUXNp6bQ5IZUFcoGY/KJE/EHLxQ2CerFvSGDqhbUWihvp39Y3e2Usb5y2zjLnZW+soljsoC1GX5s20YKySZAXU9JeNR24N1n6xa0Bs6oG5FIYR6gtXJk5D+C/bmaLa1njUonW5D3ZYAdYIYyKwtGVDXU+p1E7QLFbOUoDd0QN2KQgX1T9l3D6ffq/pv2awStusa73o5oE5m9k/bsG4OSWZAnS9HZ99TC23btm2nTp06d+7co0ePXr16Pf/884WFhS+++OKwYcMmTZr07rvvlpeXV1dX7969+9ixYxcvXrx7966DpRgYgt7QAXUrCgnUG9jt/ncrJJz/JXt3Dtt7h93XMwPqZGY/tA275pBkBtS1ku6Wc3CfnPP3OXTt2vXll1+eNm1aeXn5zp07jd90DahDLBxQX8eO/QUry2Mlv2FT4uyPpn5AnczsedtwYA5JZkA9W86BnlloY2Pj1atXL168WF9ff+rUqWPHjiWTyQMHDtTU1FRVVX388cdlZWUTJ04cOnRov379nnrqKb33XxYUFIwbN27JkiV79+69evWqaikGMYLe0AF1K2reUG9i94vYRmmA3vHe0mPsipVinXHUVdkNY2oLLmw8N4ckM6CulJPr6DkvlP3666/19fV79uxZtWrV7NmzX3vttZ49e7Zs2VLVO3Tu3HnUqFFLliwxXUrQGzpNCwm65FryVYcixLyRnfgbFpeIPpvtsV6y3ZZTXFzsCsnTKi4uth7GYvjgwsZzc0gyA+oZJeNRB9fRc1yogY4fP15VVTVr1qzBgwc/9thjqv5i1KhRK1asqKur0/4w6A2dpoUEXXIt+apDyd08gn0u4fz3bOk37IKtkgPdcgB1t80hyQyoZ6R880xKNoftrq7amTNn3nrrrWnTpqkydurUafz48RUVFWfOnJGcQW/oge6aydT8oH6F3eyQfmJtqmJOcUBdqeDCxnNzSDID6sFbqLSUqqqqSZMmde3aVQn4rl27Tpo0ac2aNRcuXLBYmg8beqC7ZjI1M6h/xy7/PZubx0r+C3t/H/vBWcmBbjmAutvmkGQG1IO3UNVSzpw5U1FRMW7cuE6dOikBP3DgwEWLFh0/fty4NB829EB3zWRqTlDfxk7/W/ZWHitpy5ZeYNcdlxzolgOou20OSea88xo1NjZqP9STAzOgLmQp3BquqamZO3fusGHDlJNMP/PMM1OnTv3888+tbymBm9uBOdBdM5nkZuDeRrElxzHiP+2STrl3u1V+LreSA91yDPZrZ7XhqtmWkNmx2ZakkjFSD95CTZfS2Nj44MGDXbt2lZaWKofvnTp1Ki0t3blz54MHD2Tzef8dvQa6ayZT8xipz2F7JaIPY5/lXnKgWw5G6m6bQ5IZUA/eQq1AXflnbW3tO++807NnT5nurVq1ev3116urqxsaGnzY0APdNZOpGUB9NNsqEX0a+0pIyYFuOYC62+aQZAbUg7dQu1CXdfz48UWLFg0cODCi0KBBg1auXGmx6XgIdbcfKfa5tE88S5+7ulFc7QRfZZskoi9m34gqWa6TIMpi+ODCxnNzSDI3c6h7IppVMzCYbpQLFy6sXr166NChytgvvPDCwoULjW+s8xDq1FvRf+JWiKsbxb1OcPid1NviNrETAkvmVlRQZDF8cGHjuTkkmZst1L0a2Nl6h5QzmVag9Y3S2Nj4ySefjB079pFHHpFXIRqNvvvuuwcPHsyl5FzM3BU0XetmLOMK8VWHYkUT2Q6J6OvZMbElB7qRWAwfXNh4bg5J5mYL9WYsgVBn6UbDvbHuySefnDZt2rx5827fvu2gZEBdlJoT1KezGonon7LvxJbMAt5IAHW3zSHJDKgHT25AXana2tqysrKCggLlGYghQ4bMnz9/9+7d1ksG1EWp2UD9HbZPIvqHt/eKLVlSoBsJoO62OSSZAfXgyW2oy/r+++/nz59fWFiopHubNm1GjBjxySefcF87bz3Gli1bkskk1wyoq9Q8oP4Rq5WI/gHb71LmQDcSQN1tc0gyA+rBExnUZV2/fn3nzp2zZs169tlnlYB/8sknJ0yYUFlZee7cObsxKisrI5FI3759ly1bdvnyZUDdQA6gfvjw4f3792s/96oTXMaS8qxrdmMA6koFFzaem0OSGVAPnuihriz50qVL1dXVkydP7tKlixLw3bt3Hzt27NKlS7/++uuGhgbTGJ9++qny58OHD9+6dav0lZ+gnohJC44l0vP95DI3r0NZhHp9ff3atWvHjh3bvn37SCRy5MgRbVGedIJb2WmJ6KXpaVoAda0AdbfNIckMqAdP3kJd+eepU6dWrVo1evRoiSIqxo8aNWrBggWbN28+evTo9evqF3ovXrw4olH79u1nzZrlM6grp+NNxHwG9YaGhqqqqunTp6vugYhEIvKsfUrRd4J17Mq/Z7PyWMlI9rmzGIC6UsGFjefmkGQG1IMn/0BdqZMnT1ZXV8+aNesPf/iD8gE5WZ06dRo0aNCUKVMWLFhQUVExZswYrUep5cuXX7lyRS4fUFd+sn//fm2N5efnK/+8fPmytijitnGb3WvBFuSxkihb7TgGoK5UcGHjuTkkmQH14MmfUFfp5MmTFRUV8Xj89ddf79OnDxfzVjRs2LBt27YxQD0SqaurW758+fDhw1u0aGGl6n7++WdtUcRtoydbncdKWrKFTey+4xiAulLBhY3n5pBkBtSDp0BAXWu+ePHiH//4x4qKig8//HDq1KmdO3e2jnb51bbWly5IPoL6rl27TE9vqNSuXbv+/ftPnDhx8eLFX3zxxenTp3/55Rfry82xbYxgn+exkj9nc06wa6ZmWyXrKdB9C6DutjkkmfMayRXoHc8PkipQ1OaQJuyjVywWMwZSx44dBw0atHnz5mvXrjGM1NPrfvXq1dGjR2uvoKvUokUL5fS7ys979uw5fvz48vLy2tpa422US9uY2ZSaUHXDze8cF2JXge5bxO7XbsurfiMXhSQzRurBk2kF2tooXh29Dh8+XIuchx56aNiwYb/73e+0Kwiocz9s06YNF+pPPvkkY6yhoSGZTFZWVr7zzjvDhw9/5plnVLbWrVsPGTLkvffe27Vr1507d1SLcNw21rFjxpO1uNTJBLpvsRje7f7ZokIy6vXcjNPvoVDzgPqLL74oo6Vv374zZ87cs2fP/fv3me8eafM11Mmz+FqBrhNA3W1zSDID6sFT84B6//79i4uLN2zYcOnSJZXZTwwD1IOkQNcJoO62OSSZAfXgqXlA3cDsJ4Y1C6gn41FpJeR/yJ9HIrzX6ZitZiLGfwlPIhbJVFcyHs022as8rltvwSkFum8B1N02hyQzoB48AeqEChLUEzEuobOhHlFKZ13011JdgPJVe6ryVAcQmr9Z5nV9klTfakNoF65eg0D3LYC62+aQZAbUgydAnVABeE1sSvxhdxYIY3EtWGXYJkyeRkgVnIxH04tI/ZJDaxV+YwnT44lkPBqNJzjUlo2JWPZSeIP2QPctgLrb5pBkBtSDJ0A9bLJSIYlYJBbTOTmdNVJXG9IjYjU0uSZFafJHfKgrz8LHEqpxd+ovxQGCdlyu/MTsgCO9sEA3EkDdbXNIMgPqwVOYoR5mcSsk9Yd0lUDvinOGsbwz2KmvrECdB9dYXF1mLKGGeiymc3U9/Q/1gYLSoy0g+zBC8Re3olQqLi4WvGGsqbi42DiYlfAsyLDx3BySzIB68GRagUFv6NwV9Kov9om0SJA+Z4xlLvwbQj1uBG2WgboK3PKHKipnCktDVQFX7Ug9G8SK4tKHI/KhRfqbrEWaDNXtQN2NrWNRVoIZe1iQYeO5OSSZAfXgybQCg97Q0UKsSK6lzL18fKgrL7Zzh9ppiHL4rf5Q+/tYIn0SPRvq3CVEVAN0+eNMbrkU3bvfI+qVTCbTBwsC2SlWgLofzCHJDKgHT4A6xNK1lIxHM7eNc6CeiEWi8YSMWw0pM5e1LUFd/bmyTOORepY3+1R/1jrIXypPv2cdHkh/p87WRyKRSDSWSCrrxEq9GXuEC1D3gzkkmQH14AlQh1i6lnj3i6sfDlMw1tpIXVtWFmFjCZaIReNx+W43zUPwulBPSXX2PqK56M54I/U0w6U77iORSDSqKhpQJzP7sN8wVUgyA+rBE6AOMW4tKUbqyXiUc0rb9khdUXLqRrm0SX6YTb5Wbx3qqhP1aUpn27KuriuOPpLxaCSSPqRQhQXUycw+7DdMFZLMgHrwBKhDzDnUzUbqXOmefueTnH9NXVla5qyAIqTx++cUA3XFw3lZlxwAdTKzD/sNU4UkM6ZeDZ6kChS1OXw4HSFaiBVZq6UUXtO0tTBS5/1cUUL2O3h4d8EznZG68oBCfRHe6hIVRwvZJ/AjsYTFluNzqHu981mVD/sNU4Uks2cjdShHidooPjx6NV1BiKGWeLJSJ57Um8BgNPugqXzYb5gqJJk9gHrIHzgWIuMXWQS9oUvraP234RRqSSsrdeKs3tS34HsXLLiw8dwcksweQN2iPNwAtbW1tbW1DkoOSaNx2wxcWZFcS5Rt4/dsaR4r6cxW5FiynvnmzZs7duyYMWPGM888ozqQ7dat2+uvv75w4cKtW7ceP378zp072p+7BXXl9f6smeisClD3gzkkmQF1jubMmTNnzhwHJYek0bhtBtStiB7q/8ASeazkv7IPrrFbOZZsxXz58uUdO3a8//77L774Ytu2bbXnq7p16zZs2LA5c+Z88sknmzdvPnDgQCQS+d3vfmdcbM6ti/cCfTMB6n4whyQzoM5Rt27dunXr5qDkkDQat82AuhURQ72E7cpjJb9l02oZv8G43TZOnTq1YcOGeDw+atSoaDTaokULLeYltWrVqkuXLi+88MKgQYOKiopGjBgxZsyYN954o7S0dObMmTm3LpM53bkC1P1gDklmQF2tZDIp7V3SyycDkTkXsw8zew1100nTnYzVhIsS6stYMo+V5LGSteyYkJJzN//6669nzpzZuXPnxx9/PGvWrHHjxg0ZMkQP81pZX7pKjs6+A+rI7NAMqAswv/fee9Le9d5779ktOSSNxm2zP6FuNv1nJBJx0t07FhnUv2RnJaLPZntEleySWaqTpqamc+fOHTly5Jtvvtm3b9+XX365ffv2TZs2VVZWrlq1KofWJd0t5+RwDlD3gzkkmQF1tQoKCqS9q6CgwG7JIWk0bpvpoW4CbL1XnXkqGqj/E/vlP7F38ljJq+wzgSW7CvXcPRw5B7rgYH6oZ+bLfsNUIckMqGfp6NGjys786NGj/s+co9mHmT2BuqK7zn4Ni4rhyXiUM4U4D/4uiwDqZy78U1v9291zKTloUHdyHd3uQgF1t80hyQyoZ2nu3LnKTnru3Ln+z5yj2YeZPYa66kVn6u+4nbuzK605iQDqHW8vzmMl/43N5d7unkvJwYK6aho5BwLU/WAOSWZAPUu9e/dWQr13797+z5yj2YeZvYW6+jyr4rvUXCKq3p3/qetyG+rPsYo8VvKX7N3j7KrYkt0zuwj13E7KAOp+MIckM6Ce0YkTJyKRSH5+vnLnPXTokPWSQ9Jo3DZ7CXV5alGZ01mzjkaj6teVe3YnvKtQH8yq8ljJ//5gxkF2QWzJrppdO/2eqwB1P5hDkhlQz2jBggXq4/FI5P3337deckgajdtmz6CedRI9Pc9ZGuqJWDSeTE02qm0nKTWLu99Hss/zWMn/xErXXqkVW7LbZkCdzOzDfsNUIckMqGf0/PPPa3vpPn36WC85JI3GbbMnUOchOY1w3evtjDtdOI1cgvoktlN6gK2aHfdh2zAWoE5mDlzbYKHJ7MHUqxZFPE3ekSNHIppz79KfR44csVhISKb2c1uejdTNv/Md1MXW/NSmHRLRl9za3+jLtmGsZgB1r6vQqgLXNhpDkxkj9ZSWLl2qd0p16dKlFksOyZGg22ZA3YqEj9Snsa8koi9gB6VPfNg2jNUMoG5alB/qmQWwbbDQZAbUUyosLNSDemFhocWSQ9Jo3Db7A+qZF9IovlJAXf6e/sZ3xphoqI9iWySiv8P2yR/6sG0YC1AnMweubbDQZAbUGWPs3LlzekSXdO7cOb9lFmX2YWZPut3ASSDUB7JKiejLWNbxiQ/bhrGss9MT5R7eVm24ag5c22ChyQyoc6Tcu4KS2bHZh5kt9m4hl1xLuWyU2+xeN7Yyj5X8KZu2kR1XmX3YNoxlpeUUFxfTojyl4uLi3MPbqg1XzYFrGyw0mQF1jpR7V1AyOzb7MLPF3i3kkmvJcT2fY788whbnsZK/YO/sYz9ozT5sG8YKdMsB1N02hyQzoM4RoE4fA1C3qxyh/i279Lfs/TxW8j/YRyd03hnnw7ZhrEC3HEDdbXNIMgPqHAHq9DEAdbvKBeqL2Td/xqblsZKOrNzgve4+bBvGCnTLAdTdNockM6DOEaBOHwNQtytnUD93/coL6dvi+rF1xmYftg1jBbrlAOpum0OSGVDnCFCnjyEQ6l7dCZW7NmzYYH01pZ8wO/VcxY7/pwdleazkf2ZT5zPzV8D6sG0YS66TIMpieD/UMwtg22ChyQyoc6Tcu4KS2bHZh5lz7JppQSxSkydPtruazHI9x9JPondi5d+zK1Z+4sO2YSy5ToIoi+H9UM8sgG2DhSYzoM6Rcu8KSmbHZh9mzrFrDmLPXlVV5R7U97EfWrKFEtEnNm2zvggftg1jBXHTywLU3TaHJDOgzhGgTh8DUHcD6t+xy4PYBgnn/4N9VMPqg942jBXETS8LUHfbHJLMgDpHgDp9DEDdFtT3sH/6q/HdDKD+Dbsg3xCXx0peY5ulz4PeNowVxE0vC1B32xySzIA6R4A6fQxA3SLUK9n3nVh5Hiv58yXPc6H+R3auL1sr4/xltrFOcQU96G3DWEHc9LIAdbfNIcmcd16jxsZG7Yd6cs9sS2JjSHuXg5JtCfWsZwbUuZrPav8/Nk+mdR4rkVqpXHWJK990ubVM/nbQjbX7LtXlslFsyQ/tOYibXpay26GvOrtmW0Jmx2ZbkkrGSJ0jjNTpY/hrpJ6MRyMpKWdvs/exHRlA/Sq7NZV9+e/YbCXOZagzxr68eXIC++Lv2IfSh79hpTG25Qf2C3dBQW8bxmoGUDe1+aGeWQDbBgtNZkCdI0CdPoaPoJ6IcadTtfexTXGhfoxdeY5V/DMNy+X//n1F4X9lH8h//l/s7XFs+yV2w2BBQW8bxgLUycyBaxssNJkBdY4AdfoYvoF6Mh7ljbftfWxbKqh/wPb/v+mRt+l//+evc15lm7azf7SyoKC3DWMB6mTmwLUNFprMgDpHgDp9DL9A3Rump6A+cOnkLuzTf8mmWcR5oP9LsDqLlQOoK4V+w7E5JJkBdY4AdfoYfoF6IhaJxhPyRfL0iXV7H9tXVVXV3z/z2N9+P/k/sFme45bmv2L2hcXKAdSVQr/h2BySzIA6R4A6fQwfQT0D52Q8mrr3zd7H9qU8/d7E7s9jB9qxZf8bm2nMxf8y6HEWwLYxjX0FqGsFqLttDklmQJ0jQJ0+ho+grhxvp/+097F96d39foCdH8O2/RV7lwv1vyp+hgWwbQDqXAHqbptDkhlQ5whQp4/hF6irrpKnMW3vY/syfU79W3aplH2Zz+bnscky1P/ju71ZANsGoM4VoO62OSSZAXWOAHX6GH6BOkvGo8pL5ul/2/vYtqy/Ue57dmUm2/0IW5yXfk49cG0DUOcKUHfbHJLMgDpHgDp9DN9AnSlfJpPFaHsf25ODCV3+vlsbQF0lQJ3M7MN+w1QhyQyocwSo08fwE9Q9kKtTryrlh7YBqHMFqLttDklmQJ0jQJ0+BqAOqOdechA3vSxA3W1zSDID6hwB6vQxAHVAPfeSg7jpZQHqbptDkhlQ5whQp48hHOpBFKCeY8lynQRRFsOj33BsDknmvEa/SppIzhNJe5eDH3qY2bF8mDnHrrm4uJiSxAK1YcMG66sp/cTVDeFS25jUtC2PlYy+s1l4yVKdOG453opggwqUD/sNU4UkM0bqHCm7hqBkdmz2YeZAd81kkmspcG0DI3WuLIZHv+HYHJLMgDpHgDp9DEDdrgB1rQLdcgB1t80hyQyocwSo08cA1O0KUNdKqpOPgilA3W1zSDID6hwB6vQxAHW7AtS1snUHgz8lsDZcNfuw3zBVSDID6hwp966gZHZs9mFmi71byCXXUuDahntQr6mpmT17tvXBcTwet26ePn16LBZzo2Q5c01NjcDacNXsw37DVCHJDKhzBKjTxwDU7QpQ58q99rx48eLRo0e7UbIP90FTITONGVAXYwbU6WMA6nYFqHPlXnv+wx/+0KJFi9u3bwsv2Yf7oKmQmcYMqIsxA+r0MQB1uwLUuXIp86VLl6QKX758udiSmS/3QVMhM40ZUBdjBtTpYwDqdgWoc+VS5tWrV0sVPmLECLElM1/ug6ZCZhozoC7GDKjTxwDU7QpQ58qlzEVFRVKFt2rV6sGDBwJLZr7cB02FzDRmQF2MGVCnjwGo2xWgzpUbma9du6Z86uyLL8yTe57ZbTMy05gBdTFmQJ0+BqBuV4A6V25kXr9+vRLqkyZNElWyJB/ug6ZCZhozoC7GDKjT3pYGoAAAEiZJREFUx3AG9eDO3WKs4uJi03WXnLnUs6kAdUmvvfaacus89thjokqW5MN90FTITGMG1MWY5e7SbskhaTRum5X1byxK0BLL4rrnUs+mAtQZY9evX9duna+++ir3kmX5cB80FTLTmDH1qhhJ+62DH4Zkaj+3ZZFqrJmeqLcFdVc3ROCmXm10IXNFRYUW6hMnThS4CB/ug6ZCZhph6lUxZmWvGpTMjs0+zAyoY6TurGTmQubRo0drod6hQ4fcS5blw33QVMhMY8bpdzFmQJ0+BqAuC1B3XDITnbmpqalFixZaqEcikX379uVSslI+3AdNhcw0ZkBdjBlQp48BqMsC1B2XzERn/vzzz7lEj0QiM2bMyKVkpXy4D5oKmWnMgLoYM6BOHwNQlwWoOy6Zic48fvx4Pag/+eSTuZSslA/3QVMhM40ZUBdjdgx1nygo9axnBtQBdWclM6GZHzx40Lp1az2oRyKR2tpav2UmMyMzjRlQF2MG1IWUDKg7E6DuuGTmZnvu3LlzJBKxWL5PMgeubbhqDklmQJ0jx1BPxCKxBGOMJeNR7XG99JXOL1TiFqBQNJ7UjxGUetYzA+qAurOSGaBOZUZmGjOgLsYsBOoq7GbonYgpvsqCuvZX5t/wFJR61jMD6oC6s5IZoE5lRmYaM6AuxuwA6olY1jg6FtOHujQMlwmv+Bd/0J76BaDOEaDOArgPAuoq+XAfNBUy05gBdTFmpyP1DKxNT78n49FYgslQN4M2oM4XoM4CuA8C6ir5cB80FTLTmAF1MWaHUE+P1mMJg9Pvzi6WA+p8AeosgPsgoK6SD/dBUyEzjRlQF2OWuss333zzzTffnDx58psWJI29Y7FILMESsUg0anT6XV/S9XYz8KfxrxfGYmZJxcXF1s22SnZsVta/sYigrtggFjZirmr2UGeMjb+z5Q6770bJgDqNGZlpzIC6GHO7du0sQDVL0lDa/t3vKmXdRKcQf6RuN2RzlbXN7ljJeCxV98l4lADrFldKtkntubnOQusHSTPhAupKITONGVAXY66rq1uX1ooVK9ZZUCIWS1i7+91kGG4H6nphLGaWtHjxYutmWyU7Nks1YeVXktP6ps9Vilsc3ZPFlZJtUnt2iWeQJAaoZwuZacyYetUzSXVq6ZE2I9kbqQtJ7sN6lrtRU1l35iDVYZiNmxucyeJKSTYHlQbZklzPEtRPnDghvMH7cB80FTLTCFOvemwmhrqegl7PvoJ6Mh7NcDzrD7dkC+ose6TubrJQCiN1rpCZxozT7x6bza+pZz/PzhGg7mOoJ2K+G6kzQN1lAepcITONGVD32Cx8pJ45BrCDkqDXs6+grjxCi8XDNFLXex1SImbQHK21cwtKxqO2D6C4Czd8q5MFAepcITONGVD32OwTBb2efQZ1apFA3egpPe15plhC61e6sr53chyqViImvZdRU4jq1Y1mR868U2Y2CQ+oc4XMNGZA3WOzTxT0egbU3YZ65ik9/kA2/cJDJp900r0ApHogQOaq3u0hFqQ4FWA0zE7Go9F4wujhUd6JL9uDdkCdK2SmMQPqHpuRWYgZUHcb6grp3PuXgrjBBSXGGGOJWCRl05FdhmrPumeTWHG4oR2XKz8xu3vF8iEHoM4VMtOYAXWPzcgsxAyo00Gd8+Q9D4exuHpELL0MWQPtXEbquvchZpFe8cLlrMMOln1PS+r1jooiFCXbufEUUOcKmWnMgLrHZmQWYgbU3Yd6+mKzEduUXE5jUIHDrMvsuV5T15ww0BwxZE7KS6cH5HRZMx1mfmIyVAfUczMjM40ZUPfYjMxCzIC6+1BPi/fmWy0OY4n0aW/OGFeN0uzSTB/iTC2AF0z33L1UqOqyv8Hd75olJJOWDzgAda6QmcYMqHtsRmYhZkCdDupGL9RRjtRVJ70VHyXjUe5APccn+o3fyKsKnUrKfU9EKmMqTwrx0VjCajZAnStkpjED6h6bkVmI2S7Um6UsrjsTAnXOg2CxBEvEovG4TG6JocqReiIWicYT2UN3oc+pG9z3HlFdM9dZeJrh8tyH0WjUZj65YgF1pZCZxgyoe2xGZiFm63xqrlOTSdOCGUtyMidQVzzRpjj9nv5n6o52xUTA0Xg8PWjPOv0ucVL6CVc5jNX1oZ4epWsdWVfXI5FI1pqlD1DsHnbIFQuoK4XMNGZA3WMzMgsx2+ETkfwcyclInffuGc3l9QSH5NnX1LPZmfrE3ZG68gk3xfNt/IUrBuqKEu09rg6oc4XMNGZA3WMzMgsx+5mg/lFOUDdRmvnap9MyUM9c1jaYTdj5UJ0Pde6zaJnlq2/Mz1xPV6Xh3R+oI0CdK2SmMTuB+nmNGhsbtR/qyT2zLSGzY7Mt0WT2M0H9IymSXHU+TNg8JNezBPVvvvlGeOO3JfQbjs22FNzMGKmLNCOzELMP+eTnSC6M1KGMMFLnCplpzA4yA+oizcgsxOxDPvk5EqDuqgB1rpCZxgyoe2xGZiFmH/LJz5GUUIdcEgPUs4XMNGZA3WMzMgsxy92of+TnSFLVNden+/wg6QlDQF0pZKYxA+oem5FZiFnqSa3/lkB+jhSqtmEq9zID6kohM40ZUPfYjMxCzH4mqH8EqHMFqNOYkZnGDKh7bEZmIWYfEtSHAtS5AtRpzMhMYwbUPTYjsxAzoG5FgDpXgDqNGZlpzIC6x2ZkFmJ2Geryu82zP+DMVqZ8lRrLfgspf15xjcS8MpUrQJ0rQJ3GjMw0ZkDdYzMyCzG7P1LPfvu3THn1q0llqGdPWCLPXSaJ++rS1K8AdWozoE5jRmYaM6DusRmZhZipT7/zqKzEeJrMmQnEs2Cd9XMlyAF1D8yAOo0ZmWnMgLrHZmQWYnYV6pwpulKTiypG4vKE4dF4Uj1Ozxqyq6cYzzpjD6h7YAbUaczITGMG1D02I7MQs9sj9dTV8+xr4fxpPjUX2TnzjgHq9ksOYmZAXSlkpjED6h6bkVmImfr0O0vEItGogvBpLktD9BSYNeN1xazegHoI2jOgrhQy05idQL3Rrzp//rzXEWwLmYWIBuqqm9az8Zv+UjFheCymw2gl1HWvr4uXFNvVDeHDtmEq9zJLUD9x4oTwklHPNApJZozURZqRWYjZfaircSv/nX0TXCIWjSfST7rpIloJ8iwTRuoemDFSpzEjM40Zp989NiOzELPrUNfQVuJyIhaJqB5Mz/ypfho965vs8/WRzINwgDq1GVCnMSMzjRlQ99iMzELMbkOdA9tkPCqzOANpzY1yCrsW15n76hOxSIRzR51YAepcAeo0ZmSmMQPqHpuRWYjZZagnVG+OkcbW8TSIFWfgdaGuOiyQCuFdlcdIndoMqNOYkZnGDKh7bEZmIWZ3oZ4GsnSqXElt+Qx7LJE+ka6+8q45+W48KOc+AidIgDpXgDqNGZlpzIC6x2ZkFmKmufs96ALUuQLUaczITGMG1D02I7MQM6BuRYA6V4A6jRmZacyAusdmZBZi9hXU27Rpo7zp/bHHHvM6UUqAOleAOo0ZmWnMgLrHZmQWYvYV1CdOnKiE+sSJE71OlBKgzhWgTmNGZhozoO6xGZmFmH0F9e3btyuhvn37dq8TpQSocwWo05iRmcYMqHtsRmYhZl9B/f79+61atZIitWrV6v79+14nSglQ5wpQpzEjM40ZUPfYjMxCzL6COmNs7NixUqSxY8d6nSUjQJ0rQJ3GjMw0ZkDdYzMyCzH7DeqbN2+WIm3evNnrLBkB6lwB6jRmZKYxA+oem5FZiNlvUL9161Z+fn5+fv6tW7e8zpIRoM4VoE5jRmYasxOoN/pV58MxTZ7n8mFmv0GdMTZq1KhRo0Z5nSJLUi25uiF82DZM5V5mTL2qFDLTyEFmjNRFmpFZiNmHUK+qqqqqqvI6RZYwUucKI3UaMzLTmHH63WMzMgsxO4B6cXFxJPhasmSJ9VWWfsJC1jZMBajTmJGZxgyoe2xGZiFmGVfW5RmHhWrIkCF2V5mFrG2YClCnMSMzjRlQ99iMzELMMq6sy8FPfKXa2lpAXYgZUKcxIzONGVD32IzMQsyAuhUB6sQC1JVCZhozoO6xGZmFmAF1KwLUiQWoK4XMNGZA3WMzMgsxA+pWFHqoJ+PRaDyZjEc19ybEEqnvtbctROPJrJ9bTwGoZwmZacyAusdmZBZiBtStKORQT8QkQGvYnIiloC4pGY9m/S3/AFDPyYzMNGZA3WMzMgsx+wrqaXi4K0DdlllBav2ROmMsg/gMwgF1IWZkpjED6h6bkVmIGVC3ovBCPQVq+fS77kg9a5SuhjmgnpMZmWnMgLrHZmQWYgbUrSi8UGeMZbFZb6TO+UpxFACo52RGZhozoO6xGZmFmH0I9USMc2pXoCSoP/HEE29alhTnzTffnDx5svVf2TIXFxe7VHIu5tRWcbQlkkk11K3HePTRRwF1WchMYwbUPTYjsxCz36CuQHkiFnFl4C5BHbKi1CZJn4LnerK2UfaYXAV1u0v/6aefrGzQoO+DpkJmGjOg7rEZmYWYU323HTn4iUWpxoTJeNQNqktQLygoWGdZ0iqvW7duxYoV1n9ly7x48WKXSs7FnIhJp064I3XVFXWNYgkV1G3FOHjwoMUNGvR90FTITGN2AvVGvyok0+R5Lh9m9hvUsyDuzjV2x9fUXd0QPmwbjakOUYJ35qqI0VDdcKTu9do0Nvq1no2FzDRykBkjdZFmZBZi9jPUNY89ixFulLNpzozIk/F4gvd5Rvxb4mzfKBfKetYVMtOYcfrdYzMyCzH7DeqZcV8yHnXnVjlA3aZZAfVkXHHcpQN1zggeUM/JjMw0ZkDdYzMyCzH7DerReELGgkuPtwHqNs1qeCe1Wyhzbj57o8lWm9sylPWsK2SmMQPqHpuRWYjZV1CnEaAuyuyeUM9KITONGVD32IzMQsyAuhUB6sRCPSuFzDRmQN1jMzILMQPqVgSoc4XMNGZkpjED6h6bkVmI2THUgy5APXczMtOYkZnGDKh7bEZmIWYZV9ZVXFzsHYuFacmSJdZXWfoJC1nbMBUy05iRmcYMqHtsRmYhZhlXkIEAda6QmcaMzDRmQN1jMzILMQPqVgSoc4XMNGZkpjED6h6bkVmIGVC3IkCdK2SmMSMzjRlQ99iMzELMgLoVAepcITONGZlpzIC6x2ZkFmIG1K0IUOcKmWnMyExjBtQ9NiOzEDOgbkWAOlfITGNGZhqzE6if16ixsVH7oZ7cM9sSMjs22xJNZkDdiqRacnWj2BLas2OzLSGzY7MtBTczRuoizcgsxAyoWxFG6lwhM40ZmWnMDjID6iLNyCzEDKhbEaDOFTLTmJGZxgyoe2xGZiFmQN2KAHWukJnGjMw0ZkDdYzMyCzED6lYEqHOFzDRmZKYxA+oem5FZiBlQtyJAnStkpjEjM40ZUPfYjMxCzIC6FQHqXCEzjRmZacyAusdmZBZiBtStCFDnCplpzMhMYwbUPTYjsxAzoG5FgDpXyExjRmYaM6DusRmZhZgBdSsC1LlCZhozMtOYAXWPzcgsxAyoWxGgzhUy05iRmcYMqHtsRmYhZkDdigB1rpCZxozMNGZA3WMzMgsxA+pWBKhzhcw0ZmSmMQPqHpuRWYgZULciQJ0rZKYxIzONGVD32IzMQsyAuhUB6lwhM40ZmWnMTqDe6FdJE8kFS8gsRBHIslzdED5sG6ZCZhohM40cZMZIXaQZmYWYi4uLvWZlMFRcXOzqRvFh2zAVMtOYkZnGjNPvHpuRmcaMzDRmZKYxIzONOSSZAXWRZmSmMSMzjRmZaczITGMOSWZAXaQZmWnMyExjRmYaMzLTmEOSGVAXaUZmGjMy05iRmcaMzDTmkGQG1EWakZnGjMw0ZmSmMSMzjTkkmQF1kWZkpjEjM40ZmWnMyExjDklmQF2kGZlpzMhMY0ZmGjMy05hDkhlQF2lGZhozMtOYkZnGjMw05pBkBtRFmpGZxozMNGZkpjEjM405JJkBdZFmZKYxIzONGZlpzMhMYw5JZkBdpBmZaczITGNGZhozMtOYQ5IZUBdpRmYaMzLTmJGZxozMNOaQZAbURZqRmcaMzDRmZKYxIzONOSSZMfWqSCEzjZCZRshMI2SmUUgyY6Qu0ozMNGZkpjEjM40ZmWnMIckMqIs0IzONGZlpzMhMY0ZmGnNIMgPqIs3ITGNGZhozMtOYkZnGHJLMgLpIMzLTmJGZxozMNGZkpjGHJPP/D1PSn1LCGY6WAAAAAElFTkSuQmCC" alt="" />

  代码验证一下:

a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaYAAABSCAIAAACQZ+fvAAAKmElEQVR4nO2dS5brJhCGWZaWkI2YZbhXEM08SbIDTc3cq9AgOkmmOb2FDJSBhHhU8TC2kGn937nnnms1KooCfhVYzRX/AADAaRB/AwDAaYDkAQBOhPgLAABOAyQPAHAiIHkAgBMByQMAnAjxGwAAnAbxr2YGAICfDiQPAHAiIHkAgBOxj+RNj657TK9aGaW4CjGod3jk8/ke1kEN4g1xeEtd330XD+Yo06HOKXMEuXF++4h6a0D2Gy0Vx2GB5C1D80uILyHHcJlbb7VASX2L+JJP9EBRh02PTlzduiyf18j6HpbyaXMsp3ecwlKtvSPVPPW3vBsLHdPdEQpaPJjf/SU5K3LK1Mdue5L3jqjvvnuXtada8SGWGZ6WvKm/df33PM/zPMqwMFvF5rXw0pHTo4v26NQ/rJ8WdL816NWgH5hjr31W2hzxMJeXPdyRzN5ZMY/WrRW7Ncd+jE+PTrBDvFIw3R7c9655fjaFOX5E8S11W/HOGO5nmeNpybOTI6sa0k/+yjFT8jw7Bd1v3+Lf7sSlcG37uof78Z3bO2thmnbt1Bz3Ma4GIQfJ5JJ1gllWS7Fvz6Ywh4+o5GgJlfk0yzxPS16+aSW9ltiLzfWjVEsu9iXEcF//sfwxM7Dvb0J8mYxsXbcuc3vd+/DLLAVJptm7BWwPlbwKMUh51XZqeOjA3HXrJ3dzxylDeWa4OI9WRvLMXoSbna2165io9WL4Lr+uJezugmux1t06Mfze34S4dd1VdMOlu64R26ozDpOo+mU4f9wevAdasS7wt40Rpt+zouG2fZTiKuUgxJeUQ7hPR+mMQzIyQ3XRsUEDQstsu0DLE4htqdeDyWiwo7e+ZX8YrDHcUfJmNVi7QnQ2mpWX6unc2z5etQAt13UiY3I0Wmae2XWrevhK4Xt4lcq1vKeHLluCtlW6iIK9OUXLeORLXujRGkn3aO2jFFfB5vKxulY7Smo5syMmhvs8ynVML3+HcnY2qjk5OGMn0IqIZb6XyQLWabuSS8MHNY1qikXVH4fcFbcu6g91mx1jV52CBNdGXKIaiEZs9Fa27GFi+NLCdp6+owvDeBy1KqkhnNZGpmJsllrTyaBkfPQzdvbzkIvVlTyplmkfL2Pznds7/u5SaJJ72YdXe0hQSK7h1+Vlgk7t9/Wj/bfnZNxn8mT18+IMWTSJQ37tATtuttv1D/c72UhUnxpIoR/RDs3pQfcisxfJPTYSo7eu5WCjxte+vkh9tWetHIPPf8H2kBoDfcw+XZ0yU3/bFCq1n+V5SJ+Tu3jIYanVKlX6aWYWgLSMT17vsI9Wk2ctrm5f+PjtMrUzE4+7y61relz002jJeoxlNYg3Sx71Zw73ILHs7Dt7d0V6OR7nq+y9AUajSi3n1JWf5dljbPWQmSmmpXQvMhCNOTJ6a1qmmBi+8pJKcgWxrRz1LXQ5pgY3HdMl5WgEXo7OrgSztrfL/PGLeSx8cdtVrIdrULpO79/t6OE2q12cXZVt5TJye3nx14NSvcN9gejvXrEvu9i1WxsoVnzIXXyK5+xyqllnVXKQ4iq6X/Vu1/q3tYHl7wU7UfXLBFph9yDfim1vcbh0V+utpisXDXsvz7XDxVnJQc3fSll1+X069v3YO+PQHZkhn/l9Xrfr6fjR1phO5HuQK+NbDozeapb5x9gaw71/+4KmoA7cYrMym4ehNPBwD99LzXegqr5v9WG8se3JVVuY1DthKX7Iu3h2DI/6hbPRfB/6Gaxf7TlZ4Wd5CM4JGZk5bFtgb3nfvnnsGOJ3bAEAJwKSBwA4EZA8AMCJgOQBAE4EJA8AcCIgefX4r+ua+HN0nADYEUhePZpQkyacBKAYSF49mlCTJpwEoBhIXj2aUJMmnASgmGLJU1J4v5jgXJn6TgghhFfILqOLdM774UpadygpNOQ2v/qoh6SuzUrEMi3D+MO3gouPpSbUjqkrHMOc2v0yVhu2YlzbGSf5VqR72elBeiXW9shoAeA9FEqekv74dK4oqSehM2rtMlPfbTPZlHWG/faDZVZIFbYc95DUNfUXWyMYy3dS5s75w7QiEJ/ZqIlv526aZzXL98d83nwmtTOWlfJ+4YhrO+Mk34pEL/s9yPWp2woaZ3a0APAuiiRPSSGl9Ea2uTL1nZ/zRMvYahEQsvVywHLCQ7+uP51atMD5lv0yXP4RaAWNzzzP7JpxtZPjD21FKIaOh0Tyou3yUtGCXk4khum+MHrKxRCAFymQvGV2uSPVuaKkkL2/5GHKcBOPnTD20o5aTnoYs6+nYMyyO7l9f4hlGp8VsmZ0lnabkKwZJRtDZ/0XiaHxsL9c9LLRVyhWtNxU9NleZiJMrnitYP0JxhCAF3la8vS+jBmO5IqS2/QyikLLZEqefZmxnOFh0L4zxwKW+XoC2Zni4rMRzvKMDnSXS7dKHvFHm7ZlOpWHzqq3cs9ku7STZb3Me+Jd8VvB+BOJIQAvUvB/Xzhc7opcMVtM1j4ULfPMwtYs91LimF0XUQDGsluG9Ycu0xxsF7kvQyNLZhrDyOKXLGyj0hNu1+IkjWG6l6N5eqKk608shgC8yC7f2JoR7OcSpkxg45+upByLYcsxD2ld9nyd+l5xlr0yd86f0NcX0SzPt2PtZylprVptf/60fhT+8oSzHPFZt51zMtSKZC8nJS/cCt8fZHng/RRJnnmrQI90/8r22U2k2DLBFyzsK/b+N7Gc9tCry80jzMS1P3NlIv54izQvPvM88y+pWNPfz2hISxmzkRiSDcBIuyyMkwW9HOtB0tS4P4EYAvAieBW5Hk285duEkwAUA8mrRxNq0oSTABQDyatHE2rShJMAFAPJq0cTatKEkwAUA8mrRxNq0oSTABQDyatHE2rShJMAFAPJq0cTatKEkwAUA8mrRxNq0oSTABQDyatHE2rShJMAFAPJq0cTatKEkwAUA8mrRxNq0oSTABRz4EHwy2f6e+NWmZzj0bM8/LCD4INlOJ8F/S1gr7p45KmHIZ+pkyW9jIPgwSdz2EHweujT6bFdTB+PHpkPdl0fdhB8XgzNSXdKqdAVcheJT+wUGXriFA6CBz+dow6CN5fIc11a8hY5IS7fw488CD4RQwM938m5koj8k8fH4yB48NM56iB4fdH76JTJPB496WFMvA46CD4ZQ9OW3tcV+0oy8lTco1KOg+DBT+eog+C1MWchQ8ro2RE7Hj3tYXCSH3UQfEYMt4piipeMPJfPZkkeDoIHP5VjDoK3Vy9WSbaMXfBnHARPPQzeFf0qICfyZQvbtIc4CB40ymEHwQeM2BedhGL7V/sHwUfKJOMTj1i0Fc9/fVHUy0nJs3qFPMdwEDzYm+MOgree5c5S0yqTdTx6locfdhB8VgznLMlLR770JRUcBA9+IngVuR5NvOXbhJMAFAPJq0cTatKEkwAUA8mrRxNq0oSTABQDyatHE2rShJMAFAPJq0cTatKEkwAUA8mrRxNq0oSTABQDyatHE2rShJMAFAPJq8d/XdfEn6PjBMCOQPIAACcCkgcAOBGQPADAiYDkAQBOBCQPAHAiIHkAgBMByQMAnAhIHgDgREDyAAAnApIHADgRkDwAwImA5AEATgQkDwBwIiB5AIATAckDAJwISB4A4ET8D9N2bF8/Cb+JAAAAAElFTkSuQmCC" alt="" />

  看来是正确的。

  上面讲的这些就是浅拷贝,总结起来,浅拷贝只是拷贝了一系列引用,当我们在拷贝出来的对象对可修改的数据类型进行修改的时候,并没有改变引用,所以会影响原对象。而对不可修改的对象进行修改的是,则是新建了对象,刷新了引用,所以和原对象的引用不同,结果也就不同。

创建浅拷贝的方法:

  1.切片操作

  2.使用list()工厂函数新建对象。( b = list(a)

  3.使用copy模块的copy()方法。( b = copy.copy(a) )


  那么深拷贝不就是将里面引用的对象重新创建了一遍并生成了一个新的一系列引用。

  基本上是这样的,但是对于字符串、数字等不可修改的对象来说,重新创建一份似乎有点浪费内存,反正你到时要修改的时候都是新建对象,刷新引用的。所以还用原来的引用也无所谓,还能达到节省内存的目的。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtAAAAGOCAIAAAAxWaPRAAAgAElEQVR4nO2d+WPUxP/G/ZccTrWVs5zly7EgVKyKHIpCsSznyvUph1qgwCIgh9yXVuxCgYIgAuUSCqyApSBIBSqHILQCioj5/pB2m81ms5NN8p7Z5Hl++HwkfTrzymQy83RyvaDEq6GhQeFWXV0dv9lSye6ZwUxjBjONGcw0ZjDTmMFMYxbF/IKdotHQNGYw05jBTGMGM40ZzDRmMPObETjEYICZBgPMNBhgpsEAMw0GmF3CQOAQgwFmGgww02CAmQYDzDQYYHYJA4FDDAaYaTDATIMBZhoMMNNggNklDAQOMRhgpsEAMw0GmGkwwEyDAWaXMBA4xGCAmQYDzDQYYKbBADMNBphdwkDgEIMBZhoMMNNggJkGA8w0GGB2CeOFBhuqq6uz8+tCBGYagZlGYKYRmGkEZhqJYsYKhxgMMNNggJkGA8w0GGCmwQCzSxgIHGIwwEyDAWYaDDDTYICZBgPMLmEgcIjBADMNBphpMMBMgwFmGgwwu4SBwCEGA8w0GGCmwQAzDQaYaTDA7BIGAocYDDDTYICZBgPMNBhgpsEAs0sYCBxiMMBMgwFmGgww02CAmQYDzC5hIHCIwQAzDQaYaTDATIMBZhoMMLuEgcAhBgPMNBhgpsEAMw0GmGkwwOwSBgKHGAww02CAmQYDzDQYYKbBALNLGAgcYjDATIMBZhoMMNNggJkGA8wuYSBwiMEAMw0GmGkwwEyDAWYaDDC7hIHAIQYDzDQYYKbBADMNBphpMMDsEgYChxgMMNNggJkGA8w0GGCmwQCzSxgIHGIwwEyDAWYaDDDTYICZBgPMLmG8UBevhoaGOndkqWT3zJYE5rTNlgTmtM2WBOa0zZYE5rTNlgTmtM2W5CAGVjjEYICZBgPMNBhgpsEAMw0GmF3CQOAQgwFmGgww02CAmQYDzJwlh0IhBnErFAo5dQQROOIEZhozmGnMYKYxg5nG7BSz6Bk88+TUEUTgiBOYacxgpjGDmcYMZhqzs4GDvyg/C4EjAzo0pRnMNGYw05jBTGP2MzMCB78QODKgQ1OapWXGhVJ/KvGKrzf6s4nATGNG4KBXyrZC4EjfDGYHzeKmPEiw7HQkafuzicBMY0bgoFfKtkLgSN8MZgfNOKt9KAQOgRhg5iwZQxO/EDgyoENTmqVlxlntQyFwCMQAM2fJGJr4hcCRAR2a0iwtM85qHwqBQyAGmDlLxtDELwSODOjQlGZpmXFW+1AIHAIxwMxZMoYmfiFwZECHpjRLy4yz2odC4BCIAWbOkjE08QuBIwM6NKVZWmac1T4UAodADDBzloyhiV8IHBnQoSnN0jLjrPahEDgEYoCZs2QMTfwiDRwNNlRXV2fn14UIzA4KZ7UPpR50O91G2v5sIjDTyClmDE38sn9G8wsrHGIwvMGMs9qHwgqHQAwwc5aMoYlfuKSSAR2a0iwtM85qHwqBQyAGmDlLxtDELwSODOjQlGZpmXFW+1AIHAIxwMxZMoYmfiFwZECHpjRLy4yz2odC4BCIAWbOkjE08QuBIwM6NKVZWmac1T4UAodADDBzloyhiV8IHBnQoSnN0jLjrPahEDgEYoCZs2QMTfxC4MiADk1plpYZZ7UPhcAhEAPMnCVjaOIXAkcGdGhKs7TMOKt9KAQOgRhg5iwZQxO/EDgyoENTmqVlxlntQyFwCMQAM2fJTg9N0XBALZIFI3H/TKpAOKpEgqlcjAXCYQ4XC4SjBkjBiAP75pHAEQqFONoRMlMoFErZznaOIAIHZFWGBz1DJ0KMUfaljlFOHRQZAodRTEic7xN/iWP2j4YDqYvS/ULyYiNBa4UlUcq2yozAQdflPa2U7WznCCJwQFZleNAzNHAIO6u9JQcPiiSBw/rKAdcvRYJWA4I2cPCtl1gPICnbKpMCB39pkE6xBpRngNZtwSH2oQwPekYHDv5fgXTydeCI83H8UjQcDCRbr0i4RtPoS7bCEdseDQfsrnIgcECKgsABSSkEDigmrwaO5NJM/9YCRzQcDEeSXiCJzw3NhSUGDnWVRBc40lqUaRICB6QoCByQlELggGLyauAIRgxWDvR3aVoJHNqYYHTrBV/gaCZIXOFI/4YO0sDRYEPmnxLGyWxTagOmbGeBwiH2oWLdMm3J05/RgW3KfmfQSYbP0zfeaaGfwRNmdH3gSLYS0hwKouFAMBKNRtULKIYWXcnx93CkSBRprnM4fhBNhBUOeYUVDgXPOllXyqcGbEqtRbfRwXHDTslWzYb7AvGLpwGF9A0bR7Z57tdGDIMFBM4VDs1P4tYrIkHWfJMn5z0cya/22LiRI2VbOXgOInDIq1gDyjNA67YQHGJ7k69PRXBEdBsROPwpngbMtMChjQ7RcICxYCQSZAZxgiNw6B6DTbgjI3aNJNm9n4Y3jerqMqbjV8q2QuDwhWINKM8ArdsianqDkgmBw5IZvcumPBg49MlBXVQwSgMpA0dCijB9q4ahkv1GY8hoDESWikwQAgekKAgcVFV4SQgclszoXTblucChvTFUEzXUKx661GH1sdh0AkeSYuMureCxWEVRMFXYFgIHTRVeEgKHJTN6l015LXCoiaDxhgqjFQt1gud6GblBUuAOHJpbOuIv7xgVrf0BXvwFpSsEDpoqvCQEDktm9C6b8lrg8KUQOCBFQeCgqsJLQuCwZEbvsikEDg8IgQNSFAQOqiq8pDSa648//rBfBQKHP4XA4QEhcECK4sXAceHChVAotHPnzgcPHnD+isu9yIEvESiKon1KP+Uzak5VaSj+5rp69eq6deuGDx9+7949+1UgcPhTCBweEAIHpCheDBw1NTWsSSNGjFi7du3PP/9s/ivu9iLHJn/+wOFq3kjdXKdOnVqwYEH//v1jB+Lhw4f2q0Dg8Kc8EDj0b/Syd4LG3xbK+erPpFXaY+N98SgCB6QoXgwcV69eZQnq27fv3Llzjx07ZvgrrvYi5yZ//g8ZWP9CtRUZNtejR4/27NkzderUDh06JLb/o0eP7FeBwOFPZX7gMHjtho33WsSNKPrXgsa+edIs05d+8bAllmZ9VxA4IEXxYuC4fv26brZr0aJF7L+zsrImTpy4fft27SI/XS+Knbrxf6Fox4q4TXHOJCscRk+3uSptc12/fn3Lli0ffPABM9XTp0/TriImBA5/iqcB5Q0c8Ymg6QMqCdv41fTp1kA42liSetpHgkZFNa6GJLzVnDH1C288bM2hIjFeIHBAVhRrQHkGaN0Wk0P8/PnzO3fuVFdXV1ZWlpWVbdy4ccWKFbNnzzaf/GJ65513vvjii4sXLxL1Iu0riCPhpg8taT91EI4ouoFD+5Y/w8ARDQe1X0qgiBxqcy1ZsiQvL4+zqWfMmFFcXBwOh1etWrVp06ZIJPL999+fOXPm6tWr9+7de/bsmWEVuo0IHP4UTwNKHTjiv4wWv9ZgeQG08a1hkWAgGAw0LV7EsoGRXU0W2j9QYqMQH1t84AgnZpektTcrZVshcPhCsQaUZ4DW/rO+vl4lrKio2Lhx46JFi6ZNm/b+++8PHDiwc+fOnLNdMuXk5HzyySdVVVVEvSgxEei/Ra0kfBhB60l1D4dBaa5Iba6ZM2caXj1JT9nZ2b169Ro8ePCYMWNmzpypbjx48OCFCxfu3Lnz/PlzBYHDr+JpwIwJHMFgQH96WwockSBrXJxo/BQ9Y+ps37yGoR9iGiOC5t2mBv9pxpZxKxwNNiTP5+kpvynq9tc4Y1KrS9nOBPr111+PHTtWWlq6cOHCcePGDRo0KCsry7yVWrRo0aVLl7y8vNGjR8+YMWP+/PlLly5dsWKF+W+1bdt2/Pjxhw4d0jUCRXM3LVgafCmyUQmpoTmBJFnhiPt7w817N5qkba4vv/xy/Pjxbdq0MWnwVq1alZWVbdmyZfXq1UuWLJk7d+706dMLCwuHDBkSCAQ6d+7cqlUr80PGGOvevfs777zz0UcfLV68eNu2bceOHfvll19MupPw/hwTTe/y5OikSq3UwSNC+nn6hFWEhC+3WThno+FAIKBZ4dB+B9bg4yyqgsFgMByrRlshJ5v+Ho74X7MSOBxp9pTyyAqH26exTpQ7pdD+Rfjw4cPz58/v2rVr2bJloVAoPz+/ffv2ho2QnZ394osvMsYmTZo0d+7cNWvW7Nix4+jRozU1NcmetHzy5EmyJh07dmxFRcU///yTrBGIFFvqMFipsLbCEedO+FWXlNhc//zzT0VFxbhx4wyb/ZVXXklZ5p9//nnz5s0LFy58//33paWl6i+OGTNm8ODBXbt2TXZAX3rppf79+xcUFHz66afr16//7rvvampq1P7mtxWO5AOJK3J7dxJ3zdzj4JzCXzJXUxjcJ6E9VS0+ExIOR9Upvvm+8Lgv0DfX2lxT3E2jJnecJmVLXOEwW/MwVsq2cvAc9FTg8FJFCknguHXrVjQa/eabb4qLi997772cnBzDIax9+/b5+fnjx49ftmzZzp07z507p75Iw2prPHv2TFfye++99/XXX5s8mUnU4JFg06mp/WB0c+RIdg+HZmQxCxyGA48bMmmuhoaGsrKyUaNGadu/Xbt2Nqt4/vz59evXDxw4sG3btsWLF0+ePPnNN980uaaWk5Pz1ltvzZw5c/369YcPH/7111/Nq/NM4HC7FsqKLNUodeDQryIoihKbzdP91FrTLRdNw0c07rKJwXNq6pgTn2842YziRWL0MBcCh2V58pR2PHA8ffq0urq6vLx80aJFo0eP7tmzZ+J8kJ2d/frrr0+aNGnJkiXl5eXRaPT+/fvJSk6jNdTHUvLz89etW8ezX1QNbvg8SfNGw7884ocHs0sqwbCwFY5E3b17d/PmzcOGDWOMderUyZEqEvvG48ePL1++/P3332/atGnu3LmFhYWvvfaa4ZW41q1bDxgwYPz48Z999ll5efm5c+fq6+tNSjYRAgcChypbgaNRtgJHbIPmcdim1dDmqy1xd5XHxQNOtoy7h8NO0QgcNHWldxI+f/78559/3rNnz9KlS4PBYJ8+fRLH+rZt2w4ePHjatGlr166trKz87bffeEpOJOTX0qVLL1++zO+nH0MzWpaa6/r162vWrHGkCv5x4/bt27t27fryyy+Li4vff/99w9TLGOvSpcvw4cNnz569atWqysrKlAshVjEUBA6qGjM2cCSZsE0uj+ruoNA+FcsC4Wg0Go3VFFdK018xSd4ZZsKG93DEhMDhVF2cJ+Evv/yyb9++xYsXT5w4sX///tpXXKhq0aLFgAEDJk2atGLFigMHDvz66682exJBayBwWJKoI2Jn3Hjy5MnFixcrKiqWL18eCoVef/31V155JTGCqAsh48aNW7x4cXl5+Y8//ph4JQ6BA4FDFW/g0CjlPeLNv5VsHtf/yOipWN027dVWTUbhZcMKR0wIHE7VldjOjx8/rqmp2b9//+rVqz/66KO8vDzDhxH69OkTDAaXLl26Z8+en3/+WX2CUSsEDo8pEwOHoX777bfjx49v3bp15syZI0eOTLYQkpOTM2zYMPWOkP37958+fVp7OcZcCBw0NUodOBJWEbSPlhmuY5hN43HTf5ICmj1xb/ppUtO9H2mxNZegiu+KEAKHZVmuK91XQNLvVENDw6FDh/bu3btq1aoZM2YMHTo02aMBubm5Y8aMmTdv3s6dOy9evPj333+nrAKBw2PyTOBILFldCNmzZ4+6EDJ48OBkz2a3a9cuLy8vGAzOnz9/y5YtBw8evHz58uPHjxNLljRwZMLoxF+jvIEDUhQFgSMNWaxLc2Of8UtnnarIgv7888+rV6+eOHFix44dK1eunDZtGot/87dWL7300oABAwoLC0tKSiKRyLlz52JfxHD1JjvdFgQO2eThwGGo27dvnzhx4ssvv5w7d+7YsWNfe+21V1991fCUYYx16tQpPz9/woQJixYt2rp1a3l5ubr9r7/+4udJQx4YnezUiMAhuRA4LMtSXfE3/Vh7Q0J6O/X06dN79+5duXLl1KlT+/bt+/rrr1etWjVv3rwpU6a89957/fr1M3mP1ssvv9yvX79x48YtWrRo27ZtJ0+evHXrlkldngwckCURHBHdRlGBw9D84MGDn376af/+/evXr//4449Hjx7dv3//l19+2aTF2rVr169fvxEjRkyePPnjjz9eunTpxo0by8vLDx06FI1Gf/nll/v37/MsGRrK0kGhH53siKdGBA7JlbKtEDhs1aV7h2Sq74kbVLR48eIFCxbMmzfv008/nTNnTlFR0fTp06dMmTJ58uTCwsJ33303Pz8/EAh07969ffv2rVu35pkksrKy+vbt++67706dOnXx4sVlZWWxnZLnRUm6LQSHmPItjd6Q2++aVGvRbZQqcCTT77///uOPP1ZUVKxevfrjjz8eM2aMui9t27blbNuWLVtmZ2d36dKld+/egwYNGjJkyMiRI8eOHRsKhaZMmTJ9+vSioqLZs2d/8sknxcXFJSUlCxcuXLx4sWGLJZP90alNmzZt27Z9+eWXs7KysrOz27Vr16FDh65du+bm5vbt23fgwIH5+flDhw4tKCiYNGlSUVHR/Pnzly1btn79+tLS0t27dx88ePDUqVPV1dW//fbbkydPeGo09zjSNz7//POqqir+ki21uc+Vsq0QOOzUpf+jwdJnLtKbA9q2bdu5c+f+/fsPGzZs3Lhxs2bN+uyzzzZs2FBeXn7s2LGrV68aNntsp/wcOCDZZHjQMyJwJJpj+1JfX3/16tWTJ09WVFRs3bp15cqV8+bNmzZt2pgxY4YMGdKvX7/OnTvz5xJD8UEJGJ3M9dJLL3Xv3j0vL2/kyJGhUKi4uHjFihVfffXV/v37o9Eoz6450jc+++wzxlivXr0WLlx4/vz5lCXzt7n+Rk+Nkm1PVMK7yxOXpcxuNrX8mbiUZUeCLBgxeJzWSCnbCoHDTl0OnNKrV69ev379pk2btm7dWlpaWlZWtmPHjl27du3Zs+fgwYMnT568cOHC1atXb926VV9fn/i6bkt1KTIN0LotlIcYkkSGBz3TAwen/v333z///PPu3bu//vprTU1NNBo9fvz4gQMHKioqdu3atWPHjrKysq+//vrLL7/csmXLhg0b1q5du3r1auLR6Z9//nn69Olff/31+PHjR48eNTQ0PHz48O7duzdv3rx27drly5cvXLhw+vTpI0eO7N27N/Yl5wULFsyePTsUCn344YcjRox4/fXXe/ToYX4dKqasrKw+ffoMHTp0woQJxcXFX3zxRSQSOXLkyMWLF+/evWvyHuFEJesbutcIDRgwYNmyZWfPnjVvCo4Kk+aA5LO16eOmsbeGJnnvZ/yLAw2yjPVvPMZ9s6n5CdtghDPJIHBYlqW67C9aWuZLSwgckITyc+BITxk9Oj158uS3336rrq4+fvx4RUXFli1bli5dOmfOnGAw+Pbbb/PEEcZYTk5OXl7eqFGjpk+fvnDhwnXr1m3fvv3QoUPnzp27fv36n3/+GasuWd/o169frDTtrfSDBw9es2ZN4nvheJsiGg7oXyquKj5v6L7DmDQhNB+9WHI0ftF4/GGOAVh/uWlcJLX+HRVFQeBIQ5bqSrwti/8YI3BohcDhQyFwWJUnRydtjQ0NDdeuXauqqtq7d+/mzZsXL148ffr0UaNG5eXlmXxVR6s2bdp07dp10KBB+fn5BQUFkydPnjVrVklJyfLlyzdu3FhWVpabm2teQv/+/VeuXHn79m1LTaHO+9FwIBAOG184iX0OJe7rBtqvtmrfLRqXW9R/GwSOxqOaPMXwX1+JW1Bp/t69wS4kV8q2cjJw1MWroaGhziFxHnJHZK0u7We5LP0FISJwWG12S0fQppmyNSBJZNgtHRw37JRs1UzTgT05OmlrNG9n9QPUhw8f3r59+9q1axctWlRUVDRu3Ljhw4cPGjSoR48ehi+WTVs9evRQ3ymQuima3rxl+LlWvTNV4FA/Sq+nCYTD+sChzyVK+iscuu/Zs7hIw51aUh5EB89BP65wKIr2Spq1FSwhO2XezjphhQNyVYYHHSscJvLk6MRfI89Befr06Z07d2pqavbu3VtZWVlRUbFt27b169cvW7Zs/vz5kyZNMnlxQKKGDx/OAxYJsmAw2Bw4DG6oaP7MGs8lFf33Xg0vqTTX4tA9HJrlDe2rSSPc2SVlW+GSirC6hOyUPAO0bgtla0CSyPCgI3CYyJOjE3+N6fWNmzdvlpeXFxUVGX510lCvvPLKihUrfv/9dz6waDgYjkaCmksqsVUGo4+zpr6kEu9q+keSj8UbetOWdinM4Dsr5kLgsCxPntIIHJCEQuCwKk+OTvw1Wjoop0+fXr9+/VtvvaVNEh06dDC/F2T48OG7du2yCqYojcsQ8fO9Q4HDYGVD+9xIJGi8wGF9iUN7DU73SC7fJTkEDsvy5CmNwAFJKAQOq/Lk6MRfI89B+eOPP7Zu3Rq7FMIYy87OHjt27MaNG3/66SdFUWJvadNp+vTp6kff0wBTFE3gMLj/gjHGWNIf6GzN94DEUkTslo244KEuQMSvPqS/whEXKQxuMea56zhlWyFwGNdFJsqdUmQaoHVbKFsDkkSGBx2Bw0SeHJ20u2buMT8otbW1c+fObdmypVpU69atQ6HQ/v37dbaxY8dq97F79+4rV668du2aHTBFMVrhSPYNV+NEkHyFQ9Fd09C9YEyt1vgIGiQEk7tAE165EauJM8ekbCsEDr0oX4Dt9qujY4o1oDwDtG4L5SGGJJHhQUfgMJEnRydVPA2Y7KD8+OOPH330UYw8GAzu3r27trY2WTnqVZVhw4bFrp448KZRg9dtNM7eye+40MoscOjvIY37LD1jzMo9HEnvx2gmbf6vuLeB4MVfEJ9iDSjPAK3bgkPsQxkedAQOfyq9wHH48OHRo0fHokZRUVFNTY36I5O+MX36dN2rRZ0LHI0ZQL8+EduUOHHHLpyYvR+sKbs0/0tzDcTkjekJ2SJZ3ogPRkZLGxx3jiJwQIqCwAFJKQQOKCargaO8vDw/P1/9raysrEWLFum+fe1U38CR5RcCB6QoCBzc8skXZSsrK0W3tKIgcEAa8TSgelA2bdr0f//3f6q/R48ea9euffz4caIZgYNeKdsKgcMXijWgPAO0boskh9jVaV4eff7556JbWlEQOCCNeBqwrKxswIABqjMvL6+srMzEjMBBr5RthcDhC8UaUJ4BWrdFkkMsCYZ7+vzzzxE43DB7vue4LfMGPHny5LvvvhuLGonPniQKgYNeCByQoiBwcEsSDPeEwOGS2fM9x20la8ArV67ELnR26dLlq6++4ixQgsChufNT+zotvbRvv4h/bZjh86uxB2BM32Ye99CLyV2l8b9lUwgckKIgcHBLEgz3hMDhktnzPcdtJTbggwcP5s2bp25v2bLlsmXL7t+/z18gdeAwjRJK0zvFEh71UDeoUUPzDvN4xb1KNOnTqfoHa43e3KEkPCeT8OKwxG+6GHwkzlgIHJCiIHBwSxIM94TA4ZLZ8z3HbekacPXq1bFPv86ePVv9WLyQvsEfOHgm5SSxJD5wxBXWGAg4Hkq1FTiMvzcX8/JlDtLA0WBD6rdokwkns02pDZiynQXKpUP8559/ptFQjmPIo/QCx8OHD92AiXXLtCVPf/Z8z3Fbsc6wZcuWHj16qP8sKCg4depUekfEqb7heOBIvcKh3274i40bE7JLo5y5pGLxTen2z2h+YYVDXsUaUJ6/CHVbXDrEW7du/eCDD7Zs2XLz5k0ev5s9LeHc1b7bR7+omWogSFeWAseJEyfmzp3bu3dvSweXX4at7eC4Yadkq2aMUTbFGGvRokXs1RpDhgw5cuSIziOkb/AHDtNJvfltXZrbOXR3b8T+N+F3A+FwUL8lqn+Lqc1LKrp6DT79kjJ7pGwrB89BBA55FWtAeQZo3RaXDnFpaWnsbMnPz1++fLn6AadkcqunGbx+UDsgaD7MGA0HNX/jOB45UgaOv//+e9++fdOmTevQoUOs6Qzfc2Bfhq2NwOFDRaPRFi1aqG3Yp0+fHTt2GNokDxx8KxyBcESXKLRRI9kQYfhterPLLGkFjoTbV6PhQDDMv8qBwAEpio8DR1lZGUtQr169iouLjx07luh3BaMxOJhdBTX8EqPJV5bSVrLAcffu3W3bthUWFsa+faXV33//7ShFoxA4oNra2mnTpsV62vr1603M3gkcgXDU4GJK4zSfuMQRCEebitdkB4OlkLiPqli8pKJf4Wi8fRWBg0Buv3FS1IeR5BmgdVtcOsQ7duwwOQqvvvpqKBSqqKiI3erhEoaiKOa3XRktZvB8DtqydIHjypUra9asGTp0qHl3ffbsmcMciqIgcFiXl8al+vr6BQsW6ADMf0XmwJE0LDDGmoNANBxIHTg0RSY+MWuyqqH/VG3yx22TP6ViUIiF+zhSthUCh1mNrop+dxSZBmjdFktt8uzZsz/++OPGjRsXL16sqqo6ePBgeXn51q1bV61atWjRouLi4pkzZ06ZMmX8+PEDBw7kPByjRo3aunWrm4cmeeDQXFFRjL4A6aDUwDFjxozFixfHXtqYUiNGjBg9evS4ceM++uijoqKiTz75pKSk5PPPP9+wYcM333yzd+/eysrKs2fPXrp0qa6u7sGDB8+fP+eBMWxtBA4TcR4vO3J7FxRFuXv37tKlS7OystQa//e//924cYOndpkDR8Kn3Zul2aadwU0ChzpWaK9nxGKBSeDQXzjRBo74Wz2S3sOhwgWDsUo1VBzBI2VbIXAIqFHg7sgzQOu2aNvkjz/+uHTp0pEjR8rKytasWVNSUjJt2rSCgoK33nqrd+/e7dq1c2Ocff3111etWuXmoTEOHGq8MBpCdE/EOyM1cEyZMmXOnDmdOnVyoyVVvfrqq7169XrjjTc++OCDUCj0ySefLFu2bPPmzXv27Kmqqrp27VqySRqBw0Su1kKwC9XV1UVFRbFOUlhYeOQgSaMAACAASURBVP78ef7aJQ4cTWe3eeCIyxX651A0P1bP+8ac0HhZo3EoSB444pdENSHD9Fv3msditTsQDQcCgUBchoqPLem1FQKHgBoF7o4kA/Tt27evXbt28uTJXbt2rV27du7cuS+++CJjLDc3t02bNikns5YtW3bs2LFXr155eXnDhw8vLCycOnXqp59+umTJkrVr127ZsqWsrGz37t379+9fvHixeVH9+vVbuHDhpUuXdA3lghIDR/Kw0fxzh9c5dJdU9u/fP3Xq1FdffdWkiVq1avXDDz9UVlbu379/9+7dZWVlX3755fr16z///POSkpKioqJJkyaNHj16yJAhAwcOzM3Nbd++veGNIIZ68cUX33777XHjxn388ccrV6785ptv9uzZc+HChdu3b/Ncx5GkPyNwpFRlZWVBQUHsuE+aNKmqqspq7fIGjmSPejQp7tP0zYEjEIgbAZJeUknybEsCQ/yFk0afPgPxXVJpHnyi+kWW5ErZVggcAmoUuDuUA/R///1XV1dXVVW1c+fOlStXFhUVjRw5sm/fvrGl1GTq0KHDgAED3n///enTpy9atGjdunXbt28/dOhQNBqtra219E6I77//3rCK3r17h8PhCxcu6PxuHhp94Ej9EIoLd3Eku2n04MGD06ZNMzw0bdu2TaOi+vr6GzduXLhw4ejRoxUVFVu2bFm+fHlxcfHEiROHDRvWt2/f7Oxs827AGOvUqdNrr702evTomTNnrly5cvv27SdOnLh27dqTJ0/UWhA45C+8rKxs8ODBsb40d+7ca9eupVe7tIGj+YZR0xWOSFB7OuueN2GMNV9Hbfx3bMZP8sBJ/O2g+liR+PCJFqc5GulvQtW/Z0wPl1wp2wqBQ0CNAnfHjQH66dOntbW133//fVlZ2dKlS6dOnTps2LDc3NzYc26JeuWVV/r27TtixIhQKLRgwYKNGzeq22/cuOHsAxGHDx/W1tuzZ8/58+efPXs2md/NQ5PwB4jxFZagZn1VwGOx3333XSgUatu2bazRsrKynGWISS3/7Nmz+/bt27p165IlS4qKit5///3Bgwd369bNfJmkQ4cOeXl577777pw5c7744oudO3eeOnXq+vXrT58+TVYdAgdl4Q8ePFi5cmW3bt3UYnNzc9esWWPyIj6e2qUNHJAqBI40lUEntqUa7ZyEDQ0Nly5dOnTo0NatWxcsWDBx4sQ333yzS5cuJrNCt27dhgwZEgqFwuFwaWnpkSNHrl69qr4nLhmhszp69ChjLCcn55NPPjl58mRKP23g0ClhTdb5937xvvjr2bNne/funThxYqtWrV599VXHMVQZtra2b9y/f7+mpubw4cNfffXVZ599Nm3atBEjRvTp00ebhxLVuXPnwYMHFxYWfvrpp2vWrNm9e/fp06dv3rxp6UscCBzp6eHDh2VlZdqrJ2+99VZ5ebkjtSNwSK6UbYXA4UyNlt4AK3B3Up6E//333507d86fP//tt9+uXLny008/LSwsHDRoUPv27ZON761atfq///u/YcOGzZgx4/PPP9++ffvJkydv3Lhhcg2eLHCcOHEi8X2FJvL84GL11eZ//fXXrl27XIJJGThMdO/everq6m+++Wbr1q3hcDgUCqnraq1btzbJIjk5Ofn5+cFgsLi4eN26dRUVFWfOnKmrq/vrr7/Sw4iZ5QwcZOPSrVu3vvnmG23OYIwFg8Hjx487WDsCh+RC4EhTVmo0eIukc4U7I13g+P3336urqw8fPrxt27bly5fPmjXrww8/HDx4cNeuXU0G66ysrAEDBhQUFMyZM2fNmjV79uyJRqN37txRq5DzPRxWJQmGe/LDx9vu3r174cKF7777bvPmzQsWLJg8efI777zTs2dP82s0r776at++fYcNGzZx4sS5c+cuXbo0EolUVlZWV1ffuXPn33//NcGQMnC4Pi5du3atrKxs+vTpffr00bbk6NGjy8rKHjx4wF8UZ+0IHJILgSNNcdfI8RbJ9AtPR48ePaqrq1Nv1tu9e/fmzZuXLVum1pifn5+Tk5PyCYKcnJzBgwerDw5s2rTpwIEDFy9eTDl8IHBkhPwQOJKpoaHh9u3b586d27dv36ZNm0pKSiZOnDhkyJDc3FzzazSq1DtYR44cOWXKlAULFnzxxRelpaV79+49fvx4VVWVZIHD4XHp+fPntbW1lZWVmzdv/uSTTz744IPYzRmq2rVrN2bMmEgkkvZ3/nwaOFJ+gYUxzUs/jZ+MjX/PB09ZbillWyFwOFNjGif2s2fPnj59+uTJk0ePHtXX1z948OD+/fu///77nTt3fvvtt9ra2kuXLp0/f76qqurIkSMHDhyoqKiIRCJffvnl2rVrP/vss08//XTatGljx459991333jjjT59+nTu3JnnmVLGWE5OTl5eXkFBQVFR0bJly0pLSw8ePHjhwoU7d+5oX9kk7Yu/3JMkGO7J54HD5Kf19fW//PJLVVXVnj17Nm/ePG/evOnTp48ePTovL69Lly6cD/rGHtgeNGjQO++8M3r06EmTJhUVFc2fP3/ZsmXr16//6quvIpFIRUXFd999d+TIkZMnT0aj0YsXL169evXmzZu3bt26c+fO77//fv/+/YcPHzY0NDx69OjJkydPnz5VL1ASjEvqc84FBQUjRox44403+vXr1717d8MbwLt06TJhwoQtW7ZUV1fzI5nXbu7xYOAwU/zzJck/osJ34UyNNq7mDdrA0WBDsn2enuDEdklZWVnaFy4VFxevWLFC/dEPP/wQjUYfPHhg50i5JHFnNd2hkUdSBQ473Yby8/S//vrrmTNnDhw4UFpaunLlyvnz58+YMSMYDI4YMYL/hbZ2FLviyd/CDo5LvXr1ev/999VVz8OHDxs+2mpHai0OHi/qz9M7r+SBI+EF5CmOsrrw4W7YUBQXDqKJsMJh7cRu3bp127ZtX3nllezs7Pbt23fs2LFz585dunTp1q1bz549+/btO3DgwDfffHPEiBGjRo0KBoOhUOh///vfJ598snDhwlWrVm3ZsqW8vPzAgQMnT5786aefamtr7927l+yZwNjuyPPeAt0WcWd1nNz+VoUkqqysFN3SiiLZCodNs7ov6kv3b968eenSpTNnzlRWVu7du7esrGzjxo3Lly8vKSn5+OOP//e//4VCoXHjxhUUFLz77rtDhgx5/fXX+/fv36tXrx49enTr1i0nJ6dz584dOnRo165ddnb2K6+80rZt29atW3fv3t2wxUyUxrgUiUTUd9WfOnXqp59+unbtGudL2GyKZ9eE9A2rbW5dCddBmt/YlSxw6D/iZvJAW+NFGxceeUtUyrZy8BxE4JDiHg7zGuUZoHVb6NsEEi7vBQ7+X0lPHhuXrNbu3cChOUrNScI0cGhk9grQSJBRLG00CoEjTXnsxEbggCQUAodVeWxcslo7AkfqX9fJUg+wLQSONOWxExuBA5JQCBxW5bFxyWrtCBxGv276jRMEDkMhcLgqBA5IQiFwWJXHxiWrtXs3cLA4WQkcKT64hMBhqEwPHPIUbl6jPAO0bgsChw+FwGFVHhuXrNbu3cBhGAqSBA7tR5ZSvt0NgcNQCByuCoEDklAIHFblsXHJau0eDRzJlBA4EldA1P82WeVA4DAUAoerQuCAJBQCh1V5bFyyWrvPAkfcRZRIMG4hQ/f0SZKPTyfd7pIQONKUx05sBA5IQiFwWJXHxiWrtfsjcKT8XnQkaPQjbTzR3hVC8gKORiFwpCnmvuh3R5FpgNZtoW8TSLgMDzoCh4k8Ni4l7pq5xx+BI4OVsq0QOIzl9hsnQ6EQ5e7EGlCeAVq3BWe1D2V40BE4TOSxcUkrngZE4JBcKdsKgcMXQuCAJBQCBxQTAocHhMABKQoCBySlEDigmBA4PCAEDkhREDggKYXAAcWEwOEBkQaOBhuS7fP0HpPagCnbWaBwiH2oWLdMW/L0Z3Rgm7LfGXTK/M/TZ54cP4gmyvgVDlGfJie4USvWgPL8RajbQnOIIalkeNAdHDfslGzVjA5sUzwNKKRv4MjyK2VbOXgOZnzgcD1ZJBfNrikyDdC6LTTtAEklw4OOwOFP8TQgAofkStlWCBzUtQipFIHDRKJWtiSRbE9CInD4UzwNiMAhuVK2FQIHdS1CKo3VIs8Ardsi8Kx2bSrPGAlpdgWBA9KIpwEROCRXyrZC4KCuRUilsVrkGaB1WwSe1X4eUBA4nDL7uRc5IgQODwiBw4IQOHRC4PC8EDicMjvbkh6+gT2ZeBoQgUNypWwrBA7qWoRUGqtFngFat0XgWe3nAUXsvhvWjsChePoGdvNdNvcgcEiulG2FwEFdi5BKY7XIM0DrtjjYDqdOnbLk9/OAIuEcg8CheHosslM7AofkQuCwIA+f5L4KHLNmzerateucOXOOHTvG4/fzgCLhHIPAoXh6LLJTOwKH5ELgsKD0aomGA6xJwQhRpWnXIs8ArdvibOCIHZGOHTsWFRUdOnTIxC9oQIkEmzpNUxdKo/vYlYRzDAKHgsCRRAgckguBw4LSqSUaDsSmiUiQsUA46n6l1uXbwBFTVlbW1KlT9+/f/++//7pXtRVFgnG9JRJE4FAUBYFDURQEjiRC4JBcCBwWZLuWaDhgedJA4FDlduCIqW3bthMnTqyoqHjy5InjVVsRAgcCR1IhcBgKgUNyIXBYkO1aIkHry+ImUyPkqlq0aDF27NgdO3ao/7Rx3NMTAgcCR1IJOS4SdgadBAYOiF9OHUEEDjOldUUFvVmYEDgUKecYBA4FgSOJhPQNn3/6wKrMX+XiZOCoi1dDQ0OdQ1L3hB80PdmoRb3tL50Jg3LXrDa7pSNo0+xgO+CSCr8E7Xtc7XY6kiW52p+dbcn0SsuIG9jNa3fwoFgS5VjnlHzO7NcVjvTDho1K063FvJ118tI9HNnZ2bhpNFEyzDG6jVjhUDx9A7ud2jO0b/Cbwcxv9mfgSOe+DduVpl+LtB3apcAh92OxCBwIHMayXZq8N7DbqT1D+wa/Gcz8Zj8Gjmg4kMZ9GzYrtVOLtB3a2cCRCS/+QuDwb+B4+PDhxYsXv/vuuw0bNhQXFweDwQ8++GDo0KGDBw/u169fjx49bB+X9G9gt1GpLSFwKGC2YvZr4NDJ4lmOwKHKwXbIkFebI3D4KHA8fvz45MmTq1evHjduXPfu3fWDRhLxA+hk5wb2tCu1KQQOBcxWzH4MHJlSqa8Ch1UhcJBXa1Z7Rgx2iWbDfbl06dLq1auHDBmiSxLZ2dkDBw4sLCwsLi7euHFjOBw+duzYmTNnqqurf/nll99++83GcZH9BnY7tWdo3+A3g5nfjMAhb6UIHCYSFzgYY3i1uQcDR01NzYIFC/r16xdLGC1atHjzzTeLi4t37txZW1ubssA0j0sm3MBup/YM7Rv8ZjDzmxE45K0UgcNEYsdZsZJwjsmIwS7RrO7LkSNHCgsLYzkjJyenqKjowIED//zzD39piqdvYLdTe4b2DX4zmPnNCBzyVorAYSLmewlpdsWLgUNVq1atiouLT58+zV+CTmkcl0y5gd1O7RnaN/jNYOY3I3DIW2msFmk7tMDBzudvEjR/M6CrUgF0GzNisIupvr5+9erV3bp1U/ele/fuX3zxRX19PX9FhjJsGXNlyg3sdmrPrL6RhhnM/GYEDnkrjdUibYcWO9hBQpTRgaO+vr64uLhNmzbaKZ6/fHN5eCyyU3um9I20zWDmN3skcAgRza4pEndomnaApJLhQc+IwW7Hjh2dOnVS+T/88MNvv/3W2Q4s5HQQew7y1J4RfcOOGcz85owPHKKW1gnWtGMNKG2HpjnEkFQyPOiSD3a//vprMNj4gNGYMWNqamqU5I/Fpi0hp4PYc5Cndsn7hn0zmPnNGR84PCwEDkhCZVzg2LBhQ8uWLRlj7dq127Ztm9aMwEFQu8x9wxEzmPnNCBzyCoEDklAZFDjOnz8/bNgwFXjatGn37t3TmRE4CGqXs284aAYzv/mFBhtSv0WbTJiNbEptwJTtLFA4xD5UrFumLZr+XFJSoqLm5uaWl5cbehA4HKndwaMm7VhnIjDzCysc8gorHJCEkn+F448//hg1apTKOX/+/GfPniUzuxE4hMipXUhvl809UvUNN8xg5jcjcMirWANK26FxiH0ow4Muz2B37ty5Pn36MMZ69uxp/kVAxwOHh29gTyaeBpSnb7hkBjO/GYFDXsUaUNoOjUPsQxkedEkGu23btrVo0YIx9t577929ezdlyejANoXAoYDZihmBQ14hcEASStrAsXz5cpVt1qxZnCWjA9sUAocCZitmBA55hcABSSgJA8d///03ZcoUFWzdunX8JaMD2xQChwJmK2YEDnmFwAFJKNkCx/Xr199++23GWFZW1s6dOy2VjA5sUwgcCpitmBE45BUCByShpAocV65c6dWrF2Ns0KBBly9fttqf0YFtCoFDAbMVMwKHvELggCSUPIHj0qVLPXr0YIyNGjXqr7/+soqBwGFfCBwKmK2YXQ8ckE2lbGc7RxCBA7Iqw4NOP9hVV1d37dqVMTZmzJj0MGKBA7Kp9I6goaQd60wEZn6zi4FD1FPpXpL6hL20HVqF5C8B8oAMDzrxYHf+/PnOnTszxsaOHZs2RkNDA8Yo+0r5FpCMmAjtmMHMb3YxcNgp2XsNbccsLbM64vCXAHlAhgedsj+fPXu2ffv2jLEJEybYwciIc3Dx4sVplyztuGEiMNOYETiIzGB20IzA4UOJDRxVVVXZ2dmMscmTJ6c0WyrZXKLOwdzc3DNnzqRXsrTjhonATGNG4CAyg9lBMwKHDyUwcJw8efLll19mjE2ZMiWl2VLJKSXkHDx27BhjbOnSpemVLO24YSIw05gROIjMYHbQjMDhQ4kKHDU1NR06dGCMTZ8+PaXZUsk8EnIOdunShTHWtWvX9EqWdtwwEZhpzB78PL2cArODQuDwodSDbqfbpNGfL1++nJubyxgbP368narTFv05eO/evdatW6utfe3atTRKkHbcMBGYaeTBz9PbKdk9M5gdNCNw+FD0Kxx//vnn4MGDGWMffPBBSrOlkvnN9OdgeXl57EmQ8vLyNEqWdtwwEZhpzLikQmQGs4NmBA4fij5wjBw5kjGWn5//+PHjlGZLJfOb6c/BUaNGJT56KjmzfTOYacwIHERmMDtoRuDwoYgDx9ixYxljffr0uX37dkqzZ87B3377Tfuuiw4dOqRRsrTjhonATGNG4CAyg9lBMwKHD0UZOGbNmsUY69ix4+XLl3n8njkH16xZo3u/VjQatVqytOOGicBMY0bgIDKD2UEzAocPRRY4wuEwY6xly5ZVVVWcJXvmHMzLy9MFjmXLllktWdpxw0RgpjEjcBCZweygGYEDglxSixYttIHjrbfeUrwybpgIzDRmBA4iM5gdNCNwQJBLYgm6f/++N8YNE4GZxozAQWQGs4NmBI60FQ4kTigJCkb0vxYJskA4mqRM/Q+j4UBys3lRCdZEFK2i4UAKR1xp5vVGgsyAzIzBfEetKBI0bHYL0rJEgpqiouGAtuCUByuxO+zcudMb44aJwExjRuAgMoPZQTMChysym5FNpnb9lGweEyzkjSQlRYIcmcmgDtPAoe6fZi+b6m78f02lgXDUAMFGWoiGA4wFg0G7hTTvXnPI0OeJ1AcrsS2nTJnijXHDRGCmMSNwEJnB7KAZgcMVaWbkKM9KSDCim/wD4WhCHgiEo3ylGf2yQY1xvJZmaJPA0ZyCouFAjEQbOBKMjWb1X7pVBCtS00Ykru40y9H+rrqz8Rv5DlZiq3fu3Nkb44aJwExjRuAgMoPZQbM6DvKXAMVJP6s3zUnJZuTY9sQZXrslEgyEo/FTnP7v65SXQPTTe/wcGve70XCABcPGUUb1pVoKad4r/SKAuoihDxyN9Mnjk+W0kHAlJa3MEbefSZqkcZWG42B16NBBd98oY+z48eP8PNKOGyYCM40ZgYPIDGYHzQgcthQ3c2smnYTA0fiHe3zgiJuldHNYMJgQMHSRIe4P7hR3TCT+dtzPDKOL9kYMXULR1df4T5U6MTqE9YHD4FqQnRUONbYk2wXrF1cM8Mwun5gerE6dOjHG6urq/vjjj1u3btXW1p4+fZofRdpxw0RgpjEjcBCZweygGYHDlvgCR/MMlrDC0TzbJ/zRHL9JH06MZvykaPopWbfWkLgSoN/KFTj0lPrd0Px/8zqG3Xs4Ivr7NQxu5bRWpNEdrykCR/KD1bJlS8bYs2fPYr/qjXHDRGCmMSNwEJnB7KAZgcOWOAJHyj/ZG3/N4LYA7XWBuMLVnye5zqG7VTMWajQTaexn0XCABQL6B0QS1zzSChxN/zC+h8PYG8eQWoY3tBpstVBarFUT7qvRNC/fwXr06BFjLDs7W4vijXHDRGCmMePz9EQCs4NSR0z+vgjFie8eDpPpznDVIe7XGyevptzSWFb8nGqywhH393rTX/vNEaDp9oNw8ps0TLJNwn4bXiTS/X9zDjFe4LD5UKuVZ3cMf73xAklc6uJY4VAURX+wampqGGPdu3dP+/SUdtwwEZhphM/TE5nB7KAZgcOWkj3dYZQAdH/E629qTDaHNdtjdysmLAckCRyJyaSRIpxkYSa+ruT7mWKFQ7tIoCQGD3Uqjy/S0fdwpF9SNBwIhCOJLLyBo7mYYERRjh8/zhh79913tT/zxrhhIjDTmHFJhcgMZgfNPgkcqeczm38YJ5RmWFhTyEh1m4DBrye9nyNZdWZPuprdUKpwXAVK+lis6bsqmv8RCapRKOnSj401DlsHMhJUn50JmD2BrHnwRv2dZAertLSUMTZz5kztz7wxbpgIzDRmBA4iM5gdNPs6cPBd2U9j8kuSb+LrS1xEiJ/UEn418wJHwssrNHeVxO+lJCscyVgMVjg4DlZJSQljbPXq1dofemPcMBGYacwIHERmMDto9mzgSBEmEu5QdGS6i3v+ImFbwo0XceHD6I9m7U7oX/OQ4q4Lw8DRXKXx1YzYz1MuByUz6Ju98aYNba3Nz5WY3BmS/hIHVeDgOFhjx45ljO3bt09blDfGDROBmcaMwEFkBrODZnV85C8hY5TwJiaTGwYiQZZsAnfwMgvkN7322muMsYsXL2o3emPcMBGYacwIHERmMDto9kngMLtDMcmfxJbf3wBB8Xr55ZcZY3/++ad2ozfGDROBmcaMwEFkBrODZn8EjqabFA1+ZvwyyvReUZkpMjzonB3pxIkT6q8vX76cszp/noN37txhjHXu3NlOydKOGyYCM40ZgYPIDGYHzX4IHOoSRvynvZrfgBUIJLzZ29knVuRT2oGjpqamXbt2jLFp06bxV+fPc/D06dOMsbfffttOydKOGyYCM40ZgYPIDGYHzV4PHPEXRhofR20KHOqdHZFg0i+X2bx/UValFzhu3br1f//3f4yxUCgkbX82ETHz9u3bGWNTpkyxUzLamcYMZn4zAocYDG8wezlwGMaFxniR/DshitlDGN5QGoHjyZMnb775JmPs/fffVyTuzyYiZl66dClj7PPPP7dTMtqZxgxmfjMChxgMbzB7OXAkTQ1mN5SqWxA4dCooKGCMDR48+NGjR4rE/dlExMyhUIgxtnPnTjslo51pzGDmNyNwiMHwBjMCBwKHKpOONHXqVMZYbm7uzZs31S3S9mcTETPn5+czxqJRfUeSmdkRM5hpzAgcRGYwO2j2VeBofjWT8UdMdG+o8qwsBY5Zs2YxxrKysi5cuBDbKG1/NhExc4cOHRhj9+7ds1My2pnGDGZ+MwKHGAxvMHs2cEDJxR841LTRqlWrY8eOabdL259NRMlcX1/PEj5Mn0bJaGcaM5j5zS/UxauhoaHOHVkq2T2zJYHZ3IzA4UOpBz1l35g8ebKaNsrLy/n7GE+vE2K2JJsY33//PWOsf//+Nku2JB+2s1NmS/I5M1Y4xGB4gxmBw4fiWeGYOXOm4dqGKmn7s4komXfu3MkYmzBhgs2S0c40ZjDzmxE4xGB4gxmBw4dKGTjUtNG6devjx48bliBtfzYRJfOcOXMYY+vWrbNZMtqZxgxmfjMChxgMbzAjcPhQ5oGjqKjIPG0oEvdnE1EyDxw40PARFaslo51pzGDmNyNwiMHwBjMChw9lEjh40oYicX82ERnzw4cPGWNt2rT577//bJaMdqYxg5nfjMAhBsMbzAgcPpThQa+rqxs9erQ6U544ccK8BGn7s4nImA8dOsQYGz58uP2S0c40ZjDzmxE4xGB4gxmBw4dKPOg1NTWBQIAx1qNHj7Nnz6YsQdr+bCIy5nA4zBj77LPP7JeMdqYxg5nfjMAhBsMbzAgcPpTuoB88eDArK4sxNnTo0Nu3b/OUIG1/NhEZ87BhwxhjlZWV9ktGO9OYwcxvRuAQg+ENZgQOH0p70Lds2aL+c+LEifwlSNufTUTD/O+//7Zq1YoxVl9fb79ktDONGcz8ZgQOMRjeYEbg8KFiB72kpET97yVLlnijP5uIhvns2bOMsby8PEdKRjvTmMHMb0bgEIPhDWYEDh+KMfbiiy+OHz9ePfrffPON4pX+bCIa5rVr1zLG5syZ40jJaGcaM5j5zQgcYjC8wYzA4UOxJnXq1Cn2+Ks3+rOJaJjHjh3LGNu9e7cjJaOdacxg5jcjcIjB8AYzAoevdPv27YkTJ6oHfezYsTdu3Ij9yBv92UQ0zB07dmSMmdQlIbOzZjDTmBE4iMxgdtAsSeAIhULMxwqFQgSNvG3btuzs7Filup96oz+biID5ypUrjLGePXs6VTLamcYMZn4zAocYDG8wG8499BIzz8skV5v3xo0b6lI/Yyy2wqHzeKM/m4iAedu2bYyxyZMnO1Uy2pnGDGZ+8wsNNlRXV2fn14UIzA6KYLbjkSQYQuTqvv/777/jx49v27YtY6xDhw47duyI1Win20jbn01EwDx58mTG2Lp165wqEO1MIzDzCyscg+34/gAAHC1JREFUYjC8wSzJTC8JhhClse9Pnz5N6Xnw4MHy5cs7deqklj9lypR79+6Z1OiN/mwiAuY+ffowxmpqapwqGe1MYwYzvxmBQwyGN5glmeklwRAiS/t+48aNBQsWbNq0ycRTW1tbXFzcsmVLteQRI0bs27cvZY3e6M8mcpu5pqaGMda5c2cHS0Y705jBzG9G4BCD4Q1mSWZ6STCEiHPfT58+ra7YM8YWLlxo6Dl37tyUKVNi94UEg8EffviBs0Zv9GcTuc28bNkyxtjs2bMdLBntTGMGM78ZgUMMhjeYJZnpJcEQopT7XlFRoX6eI6aPPvpIa/jjjz8ikUhBQUHMUFRUZLKwj8DhBsbAgQMZY0ePHnWwZLQzjRnM/GYEDjEY3mCWZKYXhBEJNi4FRKLhQON/kUMk2/fHjx+vX7++d+/eqiF2iUS9SqIoSm1t7ebNm997773Y9pdffnnhwoUpOxsCh+MYnNdTrJaMdqYxg5nfjMAhBsMbzL4PHIFwVPtPKQLHtWvX5s2bpz5awhhr0aIFi1dWVlbsblBVBQUFX3/99aNHj9KrUfFKfzaRq8yc11Oslox2pjGDmd+MwCEGwxvMCBxSBY4ffvghJyeH8al79+6TJk3avXs3Z84wrDEmb/RnE7nK/NprrzHGjh075mzJaGcaM5j5zQgcYjC8wYzAIUngKC8vHzJkCGfUYIxdvnzZZo26jd7ozyZyj/n06dOM73qK1ZLRzjRmMPObETjEYHiDGYFDksBRV1f37bffLliwoGfPntrbNZLpl19+sVmjbqM3+rOJ3GNetGgR47ueYrVktDONGcz8ZgQOMRjeYEbgkCRw6DZWV1eXlpbOmDFjwIABhoHD8HlXOzV6oz+byD3m/v37M77rKVZLRjvTmMHMb0bgEIPhDWYEDjkDh1YNDQ3Hjx9fuXJlYWFh7A6PnTt3OlujN/qziVxiVp9PycnJcbxkBe1MZQYzvxmBQwyGN5gROOQPHDrduHGjoqJizZo1ztbojf5sIpeY+Z9PsVqygnamMoOZ34zAIQbDG8wIHBkXOFyq0Rv92UQuMfM/n2K1ZAXtTGUGM78ZgUMMhjeYETgQOFR5oz+byA1m/vd9WS1ZFdqZxgxmfjM+T58BkpYZgcO3gcNOt5G2P5vIDeaFCxcyxmbMmOF4yarQzjQCM7+wwiEGwxvMvg8cjDFJX21OXKM3+rOJ3GBWr6d89913jpesCu1MYwYzvxmBQwyGN5j9HTikEAIHjdlx5qNHjzLGunfvnkHMBGYw05gROIjMYHbQLMlMz3wv+tbWbfRGfzaR48zBYJAxtmrVqgxiJjCDmcaMwEFkBrODZvrZzlChUEjYVC+BQqEQZWurleo2eqM/m8hZ5itXrjDGWrRo8eDBg0xhpjGDmcaMwEFkBrODZsO5B/K2EDjsl/zpp58yxubMmWMVA+1MgwFmlzAQOMRgeIMZgcOHQuCwWXJDQ0ObNm0YYzU1NVYx0M40GGB2CQOBQwyGN5gROHwoBA6bJa9Zs4YxNmbMmDQw0M40GGB2CQOBQwyGN5gROHwoBA6bJefm5jLGDh8+nAYG2pkGA8wuYSBwiMHwBjMChw+FwGGn5N27dzPG8vLy0sNAO9NggNklDAQOMRjeYEbg8KEQOOyUPHToUMZYaWlpehhoZxoMMLuEgcAhBsMbzAgcPhQCR9olV1VVMcY6duz4/Pnz9DDQzjQYYHYJA4FDDIY3mBE4fCgEjrRLVl8Ys2TJkrQx0M40GGB2CQOBQwyGN5gROHwoBI70Sr5x44badLdv304bA+1MgwFmlzAQOMRgeIMZgcOHQuBIr2T127DTpk2zg4F2psEAs0sY+Dx9BkhaZgQOH0o96Ha6jbT92UQ2me/du5eVlcUYO378uFNIKeXDdhYiMPMLKxxiMLzBjMDhQ2GFI42SV6xYwRh77733bGKgnWkwwOwSBgKHGAxvMCNw+FAIHFZLvnPnTuvWrRljJ06csImBdqbBALNLGAgcYjC8wYzA4UMhcFgtec6cOYyxSZMm2cdAO9NggNklDAQOMRjeYEbg8KEQOCyVfOHCBbXFrly5Yh8D7UyDAWaXMBA4xGB4gxmBw4dC4LBUcmFhIWNs3rx5jmCgnWkwwOwSBgKHGAxvMCNw+FAIHPwlHzx4kDGWnZ1dX1/vCAbamQYDzC5hIHCIwfAGMwKHD4XAwV9yfn4+Y2zdunVOYaCdaTDA7BIGAocYDG8wI3D4UAgcnCV//fXXjLG+ffs6iIF2psEAs0sYCBxiMLzBjMDhQyFw8JT87Nmz7t27M8Z27drlIAbamQYDzC5hIHCIwfAGMwKHD4XAwVPysmXLGGPDhw93FgPtTIMBZpcwEDjEYHiDGYHDh0LgSKkrV660bNmSMXby5ElnMdDONBhgdgkDgUMMhjeYETh8KASOlJo2bRpjLBQKOY6BdqbBALNLGAgcYjC8wYzA4UMhcJjr3LlzahP98ssvjmOgnWkwwOwSBgKHGAxvMCNw+FAIHOYqKChgjJWUlLiBgXamwQCzSxgv1MWroaGhzh1ZKtk9syWB2dyMwOFDqQfdTkeypMw6B5cuXcoY69Sp0+XLl93AQDvTYIDZJQyscIjB8AYzAocPhRWOZKqpqVEbJxKJuISBdqbBALNLGAgcYjC8wYzA4UMhcCTT8OHDGWOzZs3KIGYCDDDTYGQEMwKHGAxvMEsSOEKhEPOiOB9zIJbKptvojf5sopTMy5cvZ4z16dPn6dOnmcJMgwFmGoyMYEbgEIPhDWbDuYdewhKB+xLdtAYyBPNGfzaROfOZM2fUZqmsrHQVw+ftTIYBZpcwEDjEYHiDWZJJURIMZyXtTiFwJCovL48xtmDBArcxfN7OZBhgdgkDgUMMhjeYJZkUJcFwVtLuFAKHTiUlJYyx119/nQDDz+1MiQFmlzAQOMRgeINZkklREgxnJe1OIXBodeTIEbVBzp49S4Dh23YmxgCzSxgIHGIwvMEsyaQoCYazknanEDhi+vvvv3v37s0YW7FiBQ2GP9uZHgPMLmEgcIjB8AazJJOiJBjOStqdQuCIadasWczok7AyM9NjgJkGIyOYETjEYHiDWZJJURIMZyXtTiFwqNqzZ4/aFJcuXSLD8GE7C8EAs0sYCBxiMLzBLMmkKAmGs5J2pxA4FEW5f/9+Tk4OY2zjxo2UGH5rZ1EYYHYJA4FDDIY3mCWZFCXBcFbS7hQCh6IohYWFjLEPP/yQGMNv7SwKA8wuYSBwiMHwBrMkk6IkGM5K2p1C4CguLmaMdevW7ebNm8QYvmpngRhgdgkDgUMMhjeYJZkUJcFwVtLulM8Dx4YNG9QWqKqqosfwTzuLxQCzSxgvNNhQXV2dnV8XIjA7KEkmRUkwnJW0O6WC2ek20vZnE6nM5eXl6u5/9dVXoolSK3PbObMEZn5hhUMMhjeYJZkUJcFwVtLulG9XOH766ae2bdsyxpYvXy4Kww/tLAMGmF3CQOAQg+ENZkkmRSKMaDjAGhWMuF6bJG2bKH8GjosXL/br148xNn36dIEYnm9nMNOYETiIzGB20CzJpEiCEQ0Hw9HG/woQRA5J2jZR/gwcw4YNY4yNGDFCLIbn2xnMNGYEDiIzmB00SzIpUmNEwwEEjnh5oz8nk/pG0V69et29e1cghlVzxrWzAmYqMwIHkRnMDpolmRSJVjhiF1QYYyzQuNzhmiRp20T5LXCsXr2aMdayZcsff/xRIEYa5sxqZ1VgpjEjcBCZweygWZJJkQAjGg40Z4y4f7glSdo2Ub4KHBUVFer+bt68WSBGeuYMaueYwExjRuAgMoPZQbMkkyJx4IgEscLhi8ARjUZbtGjBGFuzZk2mMGsFZhozmPnNCBxiMLzBLMmkSHxJJRjGCof3A0d1dXVubi5jbPbs2UqGMOsEZhozmPnNCBxiMLzBLMmkKAmGs5J2p/wQOOrq6gYMGMAYGzVqVGwLPYZNM5hpzGDmNyNwiMHwBrMkk6IkGM5K2p3yfOC4fv16IBBgjA0dOjTmkZzZUGCmMYOZ34zAIQbDG8ySTIqSYDgraXfK24Gjtra2T58+jLERI0Y8fvw4tl1m5mQCM40ZzPxmBA4xGN5glmRSlATDWUm7Ux4OHFeuXOnVqxdjbOTIkX///bf2R9IymwjMNGYw85sROMRgeINZkklREgxnJe1OeTVwXL58uUePHup9G8+ePdOZ5WQ2F5hpzGDmNyNwiMHwBrMkk6IkGM5K2p3yZOC4ePFit27dGGMFBQX//fdfollC5pQCM40ZzPxmfJ4+AyQtsySToiQYzkranVLB7HQb2frzDz/80KlTJzVtJPPIxswjMNMIzPzCCocYDG8wSzIpMu9KdNMayBAsc/vzjz/+2LFjR8bYuHHjTMxSMXMKzDRmMPObETjEYHiDWZJJMRQKCUsEbioUColuWgOpbLqNGdqfz5w5065dO8bYxIkTzc3yMPObwUxjBjO/GYFDDIY3mA3nHm/Lh7usk2cCx+HDh7OysjiDnSTMmdjOYKbByAhmBA4xGN5g9uHs68Nd1skbgePgwYMvvfQSY2zq1Kk8fhmYrZrBTGMGM78ZgUMMhjeYfTj7+nCXdfJA4Fi3bp26FzNmzOAsWThzGmYw05jBzG9G4BCD4Q1mH86+PtxlnTI9cBQVFam7sHDhQv6SpT0HTQRmGjOY+c0IHGIwvMHsw9nXh7usU+YGjuvXr7/zzjuMsdatW1dUVGQEsx0zmGnMYOY3I3CIwfAGsw9nXx/usk4ZGjgqKyvVx18HDBhQXV1ttWRpz0ETgZnGDGZ+MwKHGAxvMPtw9vXhLuuUiYFjw4YNKvaECRNin2STnNm+Gcw0ZjDzmxE4xGB4gxmzrw+VcYFj5syZKvOSJUvSLlnac9BEYKYxg5nfjMAhBsMbzAgcPlQGBY66urphw4Yxxlq1arVz5047JUt7DpoIzDRmMPObETjEYHiDOYMDRzQcYCwYafovIwUjqjUSDISjzb8ZCcZ+okTDgaafJS1GU5InlCmB4+jRozk5OYyx/v37X7hwwWbJ0p6DJgIzjRnM/GYEDjEY3mDO4MChKIqiRIKMBcPNoSH+RwmBIxLUpohAOKyJHtrskbQkTygjAsemTZsas14w+OjRI/slS3sOmgjMNGYw85sROMRgeIM50wOHVpEgC4SjSjQc0OQDbcRozh8sGFF0Rl3g0IYMBA69XO3PN2/eHD9+vAoZDoedKlnac9BEYKYxg5nfjM/TZ4CkZc7cwBEJMhaXD1jcdZK4qyCNKxzx6xtxSx1RJSFwGIcPL0jdaTvdxr3+vG7dOvWF5dnZ2V999ZWDJUt7DpoIzDQCM7+wwiEGwxvMmRs4FEUNFoFwVLNU0ZwNGtc7Gv9bd61E+0NtaX4KHLqNwvvzzz///MEHH6hsoVDo7t27TpWsStpz0ERgpjGDmd+MwCEGwxvMmR04EmWcDdSljeYkYnxDKAIHtxzvz2vWrFGpunbtWlFR4WDJMUl7DpoIzDRmMPObETjEYHiD2QuBI/nTJYFwpPFnsYsmjAWDSfKDNnAkvZ/DC5IqcJw7d059WzljbNasWbdu3XKqZJ2kPQdNBGYaM5j5zQgcYjC8wZzZgUN/26e6eJF4sSQSVKNH050cxvFBGzLiTAgcejnVn5csWaLC9O3b9+DBg1YxvHEOmgjMNGYw85sROMRgeIM5owNHfN6IhgPBSCTIguFwQJcPtNdH9OshcT9p+kfjZZfmh2kROOJkvz+fOHEiLy9PJZk/f/7z58/TwPDGOWgiMNOYwcxvRuAQg+EN5owOHJog0JQ91E36N2ok3DTapGhCNlEa3+0RafovgwWTTJfYwPHs2bN58+apDK+//vrJkyfTxvDGOWgiMNOYwcxvRuAQg+EN5gwOHM3rG5onZJsySPyDsUkDh27tQl39iI8gRtsyXAIDR1lZWe/evVWApUuXmpstlZxS0p6DJgIzjRnM/GYEDjEY3mDO3MDRlDeiTfdmKIpisOjReHEkLjBonlPR3rRhsphh+BhtxkpI4CgvLx8wYIBa9bBhw86fP29itlQyp6Q9B00EZhozmPnNCBxiMLzBnLmBA0pbxIGjrKwsdrvGa6+9Vl5ebmL24TloIjDTmMHMb0bgEIPhDWYEDh+KLHDs27cvPz9fra5fv35lZWUpf8WH56CJwExjBjO/GYFDDIY3mH0VOP7999+2bduqu9y2bdt///1XNJEYEQSO77//fsiQIWpFubm5paWlnCX78Bw0EZhpzGDmNyNwiMHwBrOvAoeiKBMnTlR3eeLEiaJZhMnVwFFZWTl8+HC1ih49emzZsgXnYNpmMNOYwcxvRuAQg+ENZr8FjoqKCnWX+d+f7T25FDiOHz8+cuRItfAuXbps2LAhjZJ9eA6aCMw0ZjDzmxE4xGB4g9lvgePJkyctWrRo0aLFkydPRLMIk+OB49tvv419d61jx45r1qyJvcjLask+PAdNBGYaM5j5zS/UxauhoaHOHVkq2T2zJYHZ3Oy3wKEoytixY8eOHSuaQqTUg26nI6k6d+5cSUlJ9+7d1QKzsrJKSkpqa2ud7aJOmS0JzGmbLQnMaZstyUEMrHCIwfAGsw8Dx44dO3bs2CGaQqTsr3BUVFSEQqHY20wGDRq0efPmx48fG5pxDqZtBjONGcz8ZgQOMRjeYHY1cGjnJCilQqGQSwdCJ7U63UaejnTz5s21a9cOHjw4xjxx4sRjx46Z/xbOwbTNYKYxg5nfjMAhBsMbzIZzj1MSMGlnuFw6EIbHRbfRpCM1NDRs27YtdkMoYywnJ2fp0qWcvRrnYNpmMNOYwcxvRuAQg+ENZlfnOcpJNNMlYeD4559/9u3bN2HChFjOaNmyZSgUOnDggLT92URgpjGDmcaMwEFkBrODZgQOSSRP4KirqystLS0sLGzTpk0saowaNWr79u2xuzSk7c8mAjONGcw0ZgQOIjOYHTQjcEgi4YHj2LFjy5Yte+ONN7SXeN5+++2NGzfevn1bZ5a2P5sIzDRmMNOYETiIzGB20IzAIYmEBI7q6uotW7ZMmDChS5cusZDx8ssvjx8/vqys7O7du8lKkLY/mwjMNGYw05gROIjMYHbQjMAhiWja6vnz52fPnn3xxRcZY+3atdMuZvTq1au4uPjIkSM85Ujbn00EZhozmGnMCBxEZjA7aPZT4IgEWSAcFU2RRC611YMHD06ePLlx48bp06fn5eW1bNlSGzJ69+49ffr0srKy2tpab/RnE4GZxgxmGjMCB5EZzA6aETgkkf22ev78+Y0bN06cOPHNN9+Ew+HCwsKePXuyBL322mvqf9y6dUv7697ozyYCM40ZzDRmBA4iM5gdNCNwSCKetnr27Nnvv/9+5cqVqqqq/fv3l5aWrly5sqio6L333uvVq1ditmCMvfLKK2+//facOXNKS0uj0aj6BRnDurzRn00EZhozmGnMCBxEZjA7aPZf4IgEmybjYEQ0kUYq0uTJk8eNG1dQUDBy5Mhhw4a99dZbeXl5AwYM6N27t+6WC0P16NFjxIgRM2bMWLly5d69e69du2ZSl26jN/qzicBMYwYzjRmBg8gMZgfNPgscmpgRCTKZFjxShgnGWMuWLTt37jxgwIDhw4ePHz9+9uzZn332WWlp6dGjR3/99ddnz55Zqku30Rv92URgpjGDmcaMwEFkBrODZr8FDs2qRjQckChxqG21Z8+e7777rrKy8vjx46dPnz537lxNTc2VK1euX79eX1/vbF26jd7ozyYCM40ZzDRmYYGjwYbq6urs/LoQgdlB+SxwxAUMqe7poGwrtS473Uba/mwiMNMIzDQSxYwVDjEY3mD2ceCIhgMS3cZBHzh0G73Rn00EZhozmGnMuKRCZAazg2afBY7m2zai4YBUt40icLhtBjONGcw0ZgQOIjOYHTT7LHAEwpFwoPEWTHkupygKAof7ZjDTmMFMY0bgIDKD2UGznwKH1ELgcNsMZhozmGnMCBxEZjA7aEbgkEQIHG6bwUxjBjONGYGDyAxmB80IHJIIgcNtM5hpzGCmMSNwEJnB7KCZIHBA/HLpQBgeF91Gb/RnE4GZxgxmGjMCB5EZzA6aXZ3nQqGQuLk78xQKhVw6EDqp1ek2eqM/mwjMNGYw05gROIjMYHbQbDj3QN4WAodADDDTYIDZJQwEDjEY3mBG4PChEDgEYoCZBgPMLmEgcIjB8AYzAocPhcAhEAPMNBhgdgkDgUMMhjeYETh8KAQOgRhgpsEAs0sYCBxiMLzBjMDhQyFwCMQAMw0GmF3CQOAQg+ENZgQOHwqBQyAGmGkwwOwSBj5PnwGSlhmBw4dSD7qdbiNtfzYRmGkEZhqJYsYKhxgMbzAjcPhQWOEQiAFmGgwwu4SBwCEGwxvMCBw+FAKHQAww02CA2SUMBA4xGN5gRuDwoRA4BGKAmQYDzC5hIHCIwfAGMwKHD4XAIRADzDQYYHYJA4FDDIY3mBE4fCgEDoEYYKbBALNLGAgcYjC8wWz6NTHIy7LTkaTtzyYCM40ZzDRmBA4iM5gdNOODrv5U4pdpvdGfTQRmGjOYacwIHERmMNOYwUxjBjONGcw0ZjDTmBE4iMxgpjGDmcYMZhozmGnMYKYxI3AQmcFMYwYzjRnMNGYw05jBTGNG4CAyg5nGDGYaM5hpzGCmMYOZxozAQWQGM40ZzDRmMNOYwUxjBjONGYGDyAxmGjOYacxgpjGDmcYMZhozAgeRGcw0ZjDTmMFMYwYzjRnMNGZhgaPBhurwWV4SgZlGYKYRmGkEZhqBmV9Y4RCDAWYaDDDTYICZBgPMNBhgdgkDgUMMBphpMMBMgwFmGgww02CA2SUMBA4xGGCmwQAzDQaYaTDATIMBZpcwEDjEYICZBgPMNBhgpsEAMw0GmF3CQOAQgwFmGgww02CAmQYDzDQYYHYJA4FDDAaYaTDATIMBZhoMMNNggNklDAQOMRhgpsEAMw0GmGkwwEyDAWaXMBA4xGCAmQYDzDQYYKbBADMNBphdwkDgEIMBZhoMMNNggJkGA8w0GGB2CQOBQwwGmGkwwEyDAWYaDDDTYIDZJQwEDjEYYKbBADMNBphpMMBMgwFmlzAQOMRggJkGA8w0GGCmwQAzDQaYXcJA4BCDAWYaDDDTYICZBgPMNBhgdgkDgUMMBphpMMBMgwFmGgww02CA2SWMF+ri1dDQUOeOLJXsntmSwJy22ZLAnLbZksCcttmSwJy22ZLAnLbZkhzEwAqHGAww02CAmQYDzDQYYKbBALNLGAgcYjDATIMBZhoMMNNggJkGA8wuYSBwiMEAMw0GmGkwwEyDAWYaDDC7hIHAIQYDzDQYYKbBADMNBphpMMDsEgYChxgMMNNggJkGA8w0GGCmwQCzSxgIHGIwwEyDAWYaDDDTYICZBgPMLmEgcIjBADMNBphpMMBMgwFmGgwwu4SBwCEGA8w0GGCmwQAzDQaYaTDA7BIGAocYDDDTYICZBgPMNBhgpsEAs0sYCBxiMMBMgwFmGgww02CAmQYDzC5hIHCIwQAzDQaYaTDATIMBZhoMMLuEgcAhBgPMNBhgpsEAMw0GmGkwwOwSBgKHGAww02CAmQYDzDQYYKbBALNLGAgcYjDATIMBZhoMMNNggJkGA8wuYfw/MZCfxBoWLl4AAAAASUVORK5CYII=" alt="" />

  看下代码验证:

from copy import deepcopy
a = ['scolia', 123, [], ]
b = deepcopy(a)
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcwAAACcCAIAAAB9QAySAAAby0lEQVR4nO2dX4wkR33HW47MA4p4yksSJGTlhbxEkWzlGgOWASEZBLwgxY4JjRC5FieFCDAS2Phm2ycFdLLSiuVb88d2dCorRmhOkQLbdwaCtC6QeMA2JIg5+cax1C8IrzljYwRhuqo7D/2v/vbUzE7Nzux+Pzqddnurq35V1fXtX/2qZiqoAAAAeCNYWU7T/TDcnx42l0kcjIJgnK3CIpXNt3A9ZONgBe2wkrIO0nC4MSfx/KZ2SXMUuLbzyp+olTaIv6dlnc/hkeIosvVg2AmCnSCe2NPspkKbZXF7S7ATL9DnSz0i0/0wGMllCTY3falauCybNqpdekdKHGdN78RZNU133W5c0rC2O2yNNtyYB+npuePQJc36Ees+l9U+UQdpuKrcFqrFhuS8cTiJ7DTdDdODqqqqahLbXz5CsqpJXD860/1w8BmapvvCX5d44IRhlo1bp2CStjZnbXaaha4c2kKPOPZOQ+8+dLXwVh3RVZnuh4FxUK2pMeUe9HtXVS3qph39E2WuqVyLVbahv5w3DyeRFR1AoWLak6HOxx1FVslniQdOvEW9XeqJJSMGh7fQHweuvdMk1l1LT9WRXZVsHMTj2OAvr6cxlytladsWddOO/Ima+7TY0mxazpuIk8i6VyaLlbYTp/DNr3FW+5s7QTDea36o//VjPk13g2Cn9zqbaECtJk0MS01TJ9S86VROIFqYxaMgGMfxqM1nHRZKGO7aTadykE5Ko7PIoya5DwaR7SM8sgfalN62SdZctN+lllU3uzyNrXMLd8Ng/Gi6GwS7YTgKwvHpcNS0WFdcb7DWqmoakz1yD+5ZatGETbpwk6HfnVpDrvskDkZxPA6CnTge2/t0EkvPofZk2srSnw29QfQ0XWytfucZa6r04NzWMD69689ZfQzmjO71aPSKRbbKxkJ0Tx///Xw2S/XR3v06ahulvt46a70fqqepKmM0INtXtUm1cBRncs4+LZTpnNCu0FqGxCCjnkbBXWRt7sOAS6uXPomDUWCcrwyV1eSTxa2Aii0WjPeqSdyMovp/27zE2Kou8wxDPpZaDORs7mUtLCDVPYvrio+z6SSbDrWq+hyarshl6fboZhufsVHr9FjnfyZn3NIaQ0/vmnNWcBzd3lk4XFBNDwaNG+65VgezsX2yMDD4h3RBGMA9WTw83gz5+LPQ1FYj7W1cC81wGpED195Ro4Q2WVE8LKV0m4Rp/pRaluLtSqXvNb+K/ytGDtusvctV399BiHvnyL10Sz6yRx+m+/L+gYFWXehBsv1J71CXHpQvGmLKphfVnKd3vTlbKzU8ur2z+MLXvGVoYT5u9XEC4zORTSxPldGDkNJM092u1ebFJRULdV/Ai4UmBH1sxLF9Y/fTaj2NilvvGN2H3pesTe2WCtV69aUbhrrpLrms6f7p9v1Xe3Z9ztk4WLHI6vZU9h7UcpbWD5S7Bnp5uJ1Hcao8YHqr6jm7lOXuyYrPWGOhYaT0NdVjypbWqAae3nXmrOM4ur2z6BauufOybj7e3qJPcrOx7HK2KeNJ/xKLJ1LcxBCjEdM8dkf/6tsxhR2NFtYJdsOwjdR4tLDTERkpOtbNByemmOzw5rl5vWNa7FajkMatYGLpQiBMaB/tLrMbK0Wrs6r1HONxHIyC8F/aqGXzvxCIVGP6UquqaSy1EHvQXIsuRjw+HY6EPX8jU2uIMVk5H1M7Z/E4qw6yTChL7dNJmk5S6TmUn0ybzeZ4vdz1+vPT5mboRHMPmtKoOVue3rXlbH5xuoxu76zuwwg9umMvYZrCr5nOQpure+QWrpZ17kk8QfsfNVZY97lzYTvzdkzO49jsjd2U0e1DZG1M+tW9zaBZhpY8382yEJxMtCfThS6UuZJP3Gw9mzO61ymyAABw4oDIAgCARyCyAADgEYgsAAB45FiJbBGGm/bvqJsEAHDEHDeRPWoTJDbNHgDA+oHIemTT7AEArB+IrEeM9hx5BMNHK/Hnn+fPPMOffppfvszGY3bxIrt4kY3H/PJl/vTT/Jln+LVrKy8UgK0AIusRm8iu35KVG8B//GP2xBPFaDS7++4iDIv77ivOnCnuuacYjdj58+zCBXbhAjt/vhiNinvuKc6cKe67rwjD2d13Fzs77Ikn+LPPHt4GALaChUQ2i4P+4xLTNAyCIAjaS1kctAjf1TKcpvt7EARBEKZT+VqbT3spnPNJliIMhyzUc+6vqEUNla7fpZfV2qO3YRGGmVJSn7lwUbmyYOlGe+oenCeyQ73MH/67R2666aVbbvnqTTdd+fRD/PLl8to1ezur5vzVG9/496c+9auHHio+d+fLN9+8e9NN737TmxbtZQC2iwVENouFYZPF7WDI4iDeE36vsrhJNi/NXjXNMu1LS063Y6zNZ5qGnUYPD8AiDO0WqjnvVdM0FNS/Lmp+6fpdalmdQulylsVBJ7Ja3auqytK2gbJWiZcp3WJP3YPDImvr5f988wd/88H3/uwvTz311f8oX33V3ssmC9V6TdPT6f++8gq7dKm46z3X/vodV7/+dfdeBmC7cBbZLA7iuB000zRUBoJ4JYvD9JpbGk1oRFHoBq10l/37UmPBk9VL13N2uaLbPJxGQpWzLA7ieFBkG6ZpqtXCvXSLPW0PDomsqZfZ448XYcgee6x8/b8delm1UPSk23pJaf7pjz5x9dHzs1Onnn7w37qcobLg2OAosvVzL/pOcapOSLtYwAJp0tOn26mlOrDa4Ts0aBULBZE1lq7k3Ptc0zQMVDkwl76n3bVnL0uWs6YNW5EdqHvv9y1VuqXl2x60i6zay4/+yYf/722nHnjzmxfp5YFW7eplbOd/eP6RR2bvfCe7/CV7LwOwfTiJbBbHsgOSxWLMsP6pTSQMm7lphGEnxBIqyRlzEtk6Y1lktdLVnHvFCE+fDoWc55Qu37VnL0uUs64NW5G11l3+w8KlXzPZI/agTWSVXi7OfuK/3vKWdzw4kerl1svGVtU1Vm/n8ve/Z//8yR/+xR0QWXBscDzjS+L0Xh9AG5xoz0kjDyQhgGfTW+tEshnWRRjaLDTlbCx8kdK7SK6prEoS2X7JrzZSX48SIqfietHCpVtavqcIw9igYX2aP7vxxl/cfPPXv3xxiV62V0usV/NHWzs/dupTv3/f+8qXX9atBGDrWHJ3QT9CBO9JWFyOM4c0e6JwtKnFUVuH8BZa+LJZqOcsSEZvmEPphrv0sjp79DbswgV63ZVGrpYt3WbPsCdbU/7i33/21nd/9/p1PWfnXlYtHKqXpZ3Ll18uzpwpX3ppwFQAtgJnke335Sg7rdpBrCZwS9P7T/JUU0rltrlnmraerNFCQ87aPien0k27o7SaVlWli+w0DRtPtptq63cp/uBypZvsaa8VlmW6qqrK5758/ZZbDtnLA7vHBJ/XqZdn73pX+dvfmm0FYEvAhxE8snUfRpjdfvtGiVr52muz97znqK0A4FBAZD2yXSJbnD3LfvSjNRszF/bDH7IHHpAu0cTwWeGIcBIVYchopSRmJDdnnROW0C5ZkVD1r2HIaMWTpggWJdyYE02KiJTmMigLEy7nyyPlSgNPInP+TugFOZLzqC23bquBFhvOISfdjWpdhpv6uAOR9cgWiWz5/POzj3xk/ca4MLvrrvKFF+YkEkZ4rY9FGBZhxElShCEj3RVBhSnphKAkkarOVVVVFU/69JxYlJQmxnvbP1EWSorT5FMbmRBOaEmi7m1hlfJBShIxQvgy2pXzhJQVZVHE+jdWwiJ3xa9z6MzIpb6ocWjqYwxE1iNbJLLF5z/Pv//99RvjAv/ud4v77pOvUZ7U/mzEklazDP5XzgmtTPrIacLq26OEVzmPGlFmkpvZy0eXlQGryHa31N5rk5tkDE3EF0DRvRsWcyUbP3FhX5gmRRixKCzCkJGcd1ofRa56rc8qEtr6/k1LujX1cQYi65FtEVl+/frsYx87CltcKaKIv/qqcEHQL7PI5jwKGaGdyDbBhH4+W4/wnBMqqKSipLSf5FaU2ybRstB0gluShCVREYYsqf04XfHbK4moUwtKT05YRMpmzp7zSAuYzIGySGtAwfF0sUB4FRleOW5NfZyByHpka0T25z8vNltkZ1FUXr0qXBgW2dZdSkjnN3FKWEJL0kzGhZGfsISUza2iqhqDv63jLGL0ZHPCkia42RaqiGxtZO/Qqe52rnu4qqtbkqgNB/dKV0t2M22fl0MbtaByYvmvy+QQdoFXp6Y+1kBkPbI1InvlSnH27JEY40hx//38qaeEC0Mi2ymp5DfJk9PeeZQm2nNHvsmfNYtsXrYmWUS2r4jsybpO+ZsAaJePrv4ONMJHCaeEhSEjlEeLxYXLLge1zdsilmzq4wNE1iPbIrLFN75RPPnkkRjjiGZhF9oLC322K1APaT1YKc1hq6rK61WjbuRTkwcXcWoqxRaTzUmtWW0EQBXZktLSXNASwcqlRJYmjOY8ISXtAtxJvVRo2KdhyYIT2iydaRWpc5jX1McfiKxHtkVkt8CT/eIX+Xe+I1zohqgtJtthDlOqI1/N1oJRT4dEttvwkJdVXs+Ue082Jzzpo5/W3QtOLCOyZZ6ri3tJYoiHDORACF8oJtsDkd1Ojly/FLZGZDc/JvvRj8oxWZGcE2oWWZoUYbMcpOzN7Oew4hbXAaVOSCkHIiyRSsEHlJaSaOecCmJKmWEtbjmWDBcowVxGu5W0ZYseCBc4NfUxBCLrka0R2VdeKT7+8SMxxpFZFPHXXrP+uRFT8Vdp7UW8qM5hG4GoZ7v2eGi3vLMA0gya0daGOhOa1GEBcZOsvkXBmUOJbLNW1hXafhBjmaIHPFnHpj52+Dx+xuWK4RPrLlfMFNt0/IxcmPXz+8oV06E1eqsaalG1HWD+gpji3nv5977XpTlUL+v1cmoxay/zp54q7r9ftxmArcDX8TMuV4zfsOVyxUaxTcfPVNX8w2YMpZvOklDa2VCL/jeLyJbT6ezuu6tD93JmqJdTiw308uzOO8sXX9RtBmArWM/xM6u8YlXZLTt+Rmw722EzhiuGU9HmWdgr5uDxMyxJ2L/eechenkqpDYfNOByZI+XDKC2U7y4AYKvwd/yMy5VlhM/ynflbd/xMf91+2IzhiunQGr2dlVpUYg/ag8LZa6fe8cJvLh26l5V6uR6Zo/dy+etfz977Xou1AGwH/o6fcbmyMpHdxuNn2j9YD5sx1t1waI3ezlpNHY+feer112fveudhe1mt1/wWs3nfs9tuK3/3O6O1AGwL/o6fWW4yvly4INve42cGDpuZV/ehl5BcC+lLsovB42f+/A1v+M5b3/qnN964XC8L8V9LIaYW05+EF3/5y9mZM+XBgZ4HANuFr+Nn9hyu+Fj42p7jZ9Qmdau7emiN8UgYvRZicfP2kGWfu/Hjr7///Xxvb4leNgmuU4uJNT33j4/NPvCB8vr1QTsB2A58Hj/jcmWFW7i27viZpkTR43Ooe2+jrVWNtXA6fkbM6n/uSdiXvvDQqRsW71O1Xm4tNk3D4I9vuOFrf/O318+ds9gHwPaBDyN4ZFs+jGCDXbkyu+02duFCWRReTaqqqvzDH9jDD89uv51JXwQDwNYDkfXItotsDbt4cXbrrexrXyulb3RdGeWrr7KvfGX29rczQnzkD8DRApH1yPEQ2Rr26KN/+NCHijNn2Hi8kmhp+atfsW9+s/jkJ2cf/jB7/PHDZwjAZnLcRHbT/hmNXH/LrMoA/swz7Pz52R13FOfOsTTl3/52efWqYzChLIry6lX+rW+xNC0eeGB2xx3swQf5s88ubQwAW8GxEtmt4Mh1fyUqz3/yE/bkk8W5c7Momr3tbcW99xZxXHz2s8XZs+z8eXbhArtwgZ0/X5w9W3zmM0UcF1/4wuzWW2dRVJw7x558kv/0p4e3AYCtACILVgB/4QX+3HOcUn7lCrt0iV28yC5eZJcu8StX+A9+wJ97jk+HNoYAcIyByAIAgEdWIbLyAWqMCkeD1N8aafyG46g9QFT52kqaWL/Ntz36uE5m+nJPysKE57QzgEXSIe/SMSR6Dr2d3Xl58tlQOeVJ8+2f/UnOUXRyvuMdALAoq/dkXQ9/lw7n6GQ6qo8YEg+j71VSOKm4JJH+pcL1F9f3X19fST9XzfcHi+8A7audW4N4J7LymRndOXr999vbTh8BAIDVi6z1VAnKk0RyEs0pjSd6VlVVcZrUX6jOIlEo+xOVDWeEWM4Laco1iCPlUdQ52kaRNZ6QDJEFANhYrcjmPIpYlPDmQEr5T/YznNt7Q0ZoJ7JNMEE9ASnnhEpHPRM1gFA2N9ZBg0j1ZHPKot6HlQ7eMOg+PFkAwKFYpciWJGpOGK4PZVM0dEhkW880IZ2LyilhCe1cUUFkE5aQsrm1PfMyJywhdRElpaUWKKjhScISMf4gxX/7E9/6YC5EFgBwKFYmsiWJGJFOGC5JJIQ7h0RWnNT3LmokHd7ZK2BCqz7y24lsXlY5J41nWq+qsaSOMISM5FWeN04rISyK2Lz5vvkcY3mJb364YHOWBPt7cx7NCZq3XWmnrZecjLJQOW9V7cQOc+BenQDVwZmBM1z1EoUDE4k+nZqD8JZt1gbk2FFVidOgqHuLK6ujg7XA4urJYzUiK/it0tGVwlgS9CUaiMk2t+iDUFW95lEWT28XBDEnLIxYQoQRSDltM+kW0KxOqGXhSxg/S3iyR7gk2B83nZM6ON5FZoRAczPsjWdTi25+YTwymiaMUqbEZ0jb1/U0hVDxcFbW6xRlzaulm8FEkrz27ZCw3jyqSk//ssl5lDC6tDApM5iujkTYnVL/nJe5cA7rcC2UIrC4ejJYhchKT4DtaGLaP/1DC19VE5x1dC3NIls/6wnP1UHYZxI1jqTl2RWsFYoTQxALD4CjXBKknOSckloO6hxMil93DW29VCr6vHq5RvNav6yNGol30UR8Q0gefV/rbvWSWLTJsPbIqHI94b3DOOAIGyjVyUrECBWr0LxjclK/TkpCuPjMz68FFldPHCvfwuVy/nvOCTVLCU2KMOJ5ziN1Z1XvSYlulBLYJbSbQjaCSBPxAVV9NF0fadKEGvSFNXkwcEJKdRVusMpHtyRYx21KQnjtfOWESYM2L2k3Le3rru1+M4z8TsJKkrAkKsKQJY1/p70S2iuJ4fZ2Et1N0qMmN9Kb2rwVpNbWX6K1Hgk6ZXS67WjvcrmIrgEjUuZ5K6NtxznUAourJ5AjEdlOTMVf+3ircrEdY+3T303NRD+o/hNJmDDsZU+NMin/2uMzuTmKcHfVEaeKVV72O8Pm+0pHvCRICCd57VWVJCoiUrbZNot7kiNGOc0r7YU05MnmhCVNzLe1ShHZurjeubbkJr4YamtFTzDnCamtaktRRbbMc3kmZA0K2zC8S2SRZSTpAzi6JzuvFlhcPYHgY7Xe2YAlQVqLLEtCRvKyDhqKLyf5vVhSWqojP+cJKYU1GcFprao8L1ubLSLb11RWsaiPyapLf7rIiiHXunaayHbx0MaddAuCS4055MmWhDBC6vasA/SyyLrVwlpWW0eEC44XEFm/bMaSYCOyvA4UkFyOGIjqn/C8qnLKqbZEnqgRHsnVrV3gfnKgimxJaWmONvaZlDnlhJZ53t2oetNJwjsRp7mmgBEjOU/CIiIlTYqEKv7y4DKUZaeHrHGc1BFtm8g61aJrMh+Lq2ADgcj6ZFOWBGkXLmgcpTZi0IUL2v1tjdusbo2qTZojst2OiLxswym9TOSEJ2RgGa0kUR137n5Qimh3TUj1UkS2VkOehEVCeEJKcWdb04BzogeaIKrNqIhsk60wRxmuhSnn1S2ugo0EIrs2jnBJsAnzyQFZyZUWP6BRhAmvpM1YjUyoM1mLyFLahyB7MaXMsFgn3k7LvJEbLdwsbt0VfWTbwlfVS1i98tlWf65UDYhs/ZZqRDZpo//1Bu3+7ThUi76FvSyugg0FIrs2jnBJsPG8xBUbk4FEXxtkVHCjBjxZORRQ39Wb3S4PiptkpcS1VEVNyNiqxZq1yobitkHsdZyH4juLuzgE+rUp6eXhXgsPi6tgY4HIAgCARyCyAADgEYgsAAB4BCILAAAegcgCAIBHILIAAOARiCwAAHhkm0V2uh8GoyDYibP690kcjLM59wynmcTBKJifSc1BGronXnnphyzrkCxRdwBOKE4im8WjINip/8WbMrAO0nAUZ5WgJgfp6f3p3LvmpFlImxYVstWWfsiyDslCptaivBOEXk0CYBNx9GTbETXdDzfFf/HkqXkVWQPTdF/Iwav7qZR1SBYwdZruNu/mbBymByszAYBtACJ7mGwPb4OSg1eRXW3m7rkdpOFuOm3vgjMLThjuIjvqwwXZOAh2gmCcNVHRdrA1v3Yjqg+bBvGksqTpYxHt8NOvKEzT3S580ZTemSQZPE7T3SDYabwnNY2xrEms3GWsV51VuGt55UziYBTH4yDYieOxxcLuilALY+mG+ov21DXdTadCSNeprIGch/rLUHc9jdoaYr9syEsagDWxoCcrXRnJItg6LNP9sLluCpuGrTQIoqbl7DIO5944iYNRmB4MDnJzveS7dJuFmlpMzeLddFpl8TibTrKpmPkSNisY7RlnahB2iYa195fUp0rddXsUILLgRHMYkbVd0X8Q04w0f6rzxZRkNs/I0SSjGTaThPmsoRYj3d+0VLAlG4fpvrZbYDmb9Yob21BpriVEdqE+HWgfBYQLwIlmhSI74Ml2Sy7CeJse1J5s2syL+0GrXVnOJBeRNZSu/aDb3F7Jxvap9yQORnHaNcU8m7OJq3yb7Rlnzf/uZRlztvSX7sn2ddftUcHCFzjJOImsuv9GCPBJY8YWvzPEN7uoX7u5Z+iKRpeJGm/tNpm17lU86QKUe2oavSzDXVllilTWf43HcTCyGZnF46w6yLID6RZ1G1xrwEDpA9Xv7gr3p+I22/llWbD2l9anYt319lHBFi5wctnmDyMAAMDGA5EFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj0BkAQDAIxBZAADwCEQWAAA8ApEFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj0BkAQDAIxBZAADwCEQWAAA8ApEFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj0BkAQDAIxBZAADwCEQWAAA8ApEFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj0BkAQDAIxBZAADwCEQWAAA8ApEFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj0BkAQDAIxBZAADwCEQWAAA8ApEFAACPQGQBAMAjEFkAAPAIRBYAADwCkQUAAI9AZAEAwCMQWQAA8AhEFgAAPAKRBQAAj/w/GGN+HFKGTewAAAAASUVORK5CYII=" alt="" />

  验证正确。

深拷贝的创建:

  1.正如代码示例用一样,只能通过内置的copy模块的deepcopy()方法创建。


  好了,关于深浅拷贝的问题就先说到这里,有什么错误或需要补充的以后会继续。

16.python中的浅拷贝和深拷贝的更多相关文章

  1. python中的浅拷贝,深拷贝

    直接引用,间接引用 # 1.列表存储的是索引对应值的内存地址,值会单独的开辟一个内存空间 list = ["a","b"] 内存里面存储的就是list[0],l ...

  2. python中的浅拷贝和深拷贝

    1.赋值语句 a = 'abc' b = a print id(a) print id(b) # id(a):29283464 # id(b):29283464 通过简单的复制,我们可以看到,a b其 ...

  3. Python中的浅拷贝与深拷贝

    编者注:本文主要参考了<Python核心编程(第二版)> 以下都是参考资料后,我自己的理解,如有错误希望大家不吝赐教. 大家有没有遇到这样一种情况,对象赋值后,对其中一个变量进行修改,另外 ...

  4. (转+原)python中的浅拷贝和深拷贝

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6069722.html 原网址: http://blog.csdn.net/sunshine_in_mo ...

  5. Python 中的浅拷贝和深拷贝

    1. 列表和字典,直接赋值,都是浅拷贝,即赋值双方指向同一地址,因为 Python 对可变对象按引用传递. >>> a = [1, 2, 3] >>> b = a ...

  6. Python中的赋值、深拷贝与浅拷贝(内存地址)

    Python中的赋值.深拷贝与浅拷贝(内存地址) 1.python中的可变对象与不可变对象 (1) 可变对象:dict,list def dict_test(): a = {} b = a print ...

  7. 【转】JAVA中的浅拷贝和深拷贝

    原文网址:http://blog.bd17kaka.net/blog/2013/06/25/java-deep-copy/ JAVA中的浅拷贝和深拷贝(shallow copy and deep co ...

  8. python中的浅拷贝与赋值不同

    Python中的对象之间赋值时是按引用传递的,如果需要拷贝对象,需要使用标准库中的copy模块. 1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象. 2. copy.deep ...

  9. Python 引用、浅拷贝、深拷贝解析

    引用 Python是动态数据类型的语言,故在对变量进行赋值时是不用制定变量类型的. 或者说,你可以把变量赋值的过程,当作是贴一个标签,去引用该数据. 看下面的例子: In [54]: a=4 In [ ...

随机推荐

  1. Intel HD4000的驱动-黑苹果之路

    10.9.1装好后显卡HD4000能自动识别,但是识别的内存始终只有64M,使用了删.改AppleIntel*.kext驱动.修改clover的graphic的ig-platform-id.修改DSD ...

  2. java 计算 文件 md5

    public class MD5Check { /** * 默认的密码字符串组合,用来将字节转换成 16 进制表示的字符,apache校验下载的文件的正确性用的就是默认的这个组合 */     pro ...

  3. 【翻译习作】 Windows Workflow Foundation程序开发-第一章04

    1.2.3  Windows Workflow运行时 从Windows Workflow的角度看,可以将工作流活动当成是交给一个工作流处理器去执行的一系列指令或操作码.在Windows Workflo ...

  4. JS获取当前文件所在的文件夹全路径

    var js = document.scripts; js = js[js.length - 1].src.substring(0, js[js.length - 1].src.lastIndexOf ...

  5. 解决linux中Kipmi0进程对CPU使用率很高问题

    kipmi is supposed to run with low priority. When you say it consumes 70-90% of the CPUs, is that con ...

  6. 关于javax.servlet.jsp.JspTagException: Don't know how to iterate over supplied "items" in &lt;forEach&gt;

    今天遇到这样一个异常: 严重: Servlet.service() for servlet jsp threw exceptionjavax.servlet.jsp.JspTagException: ...

  7. 华为OJ平台——将真分数分解为埃及分数

    题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...

  8. K均值算法实现

    运行环境:Ubuntu+Code::Blocks(G++) K-均值:在D(数据集)中随机地选择k个对象,每个对象代表一个簇的初始均值或中心.对剩下的每个对象,根据其与各个簇中心的欧式距离,将它分配到 ...

  9. 阅读jQuery源码的18个惊喜

    注释:本文使用$.fn.method指代调用一系列选中的元素的方法.例如,$.fn.addClass,指代$('div').addClass(‘blue’) 或 $('a.active’).addCl ...

  10. jquery的end(),addBack()方法example

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...