for iter = 1:num_iters

    %梯度下降 用户向量
for i = 1:m
%返回有0有1 是逻辑值
ratedIndex1 = R_training(i,:)~=0 ;
%U(i,:) * V' 第i个用户分别对每个电影的评分 %sumVec1 第i个用户分别对每个电影的评分 减去真实值
sumVec1 = ratedIndex1 .* (U(i,:) * V' - R_training(i,:));
product1 = sumVec1 * V;
derivative1 = product1 + lambda_u * U(i,:);
old_U(i,:) = U(i,:) - theta * derivative1;
end %梯度下降 电影向量
for j = 1:n
ratedIndex2 = R_training(:,j)~=0;
sumVec2 = ratedIndex2 .* (U * V(j,:)' - R_training(:,j));
product2 = sumVec2' * U;
derivative2 = product2 + lambda_v * V(j,:);
old_V(j,:) = V(j,:) - theta * derivative2;
end U = old_U;
V = old_V;
RMSE(i,1) = CompRMSE(train_vec,U,V);
RMSE(i,2) = CompRMSE(probe_vec,U,V); end

  ......................................................................

SGD解决

function [ recItems ] = mf_gd( trainMatrix, featureNumber, maxEpoch, learnRate, lambdaU, lambdaV, k)

%get the size the train matrix
[userNumber,itemNumber] = size(trainMatrix); %init user factors and item factors
Ut = 0.01 * randn(userNumber, featureNumber);
Vt = 0.01 * randn(itemNumber, featureNumber);
%逻辑1和0
logitMatrix = trainMatrix > 0; %calculate the gradient of user factors and item factors
%and user sgd to optimize the risk function
%alternative update user factors and item factors alternative
for round = 1:maxEpoch,
dU = -(logitMatrix .* trainMatrix) * Vt + (Ut * Vt' .* logitMatrix ) * Vt + lambdaU * Ut;
dV = -(logitMatrix' .* trainMatrix') * Ut + (Vt * Ut' .* logitMatrix') * Ut + lambdaV * Vt;
Ut = Ut - learnRate * dU * 2;
Vt = Vt - learnRate * dV * 2;
end %predict the rating of each item given by each user
predictMatrix = Ut * Vt'; %sort the score of items for each user
[sortedMatrix, sortedItems] = sort(predictMatrix, 2, 'descend'); %get the top-k items for each suer
recItems = sortedItems(:, 1:k);
end

  

Matlab梯度下降解决评分矩阵分解的更多相关文章

  1. Matlab梯度下降及正规方程实现多变量的线性回归

    如果需要代做算法,可以联系我...博客右侧有联系方式. 一.相关概念 1.梯度下降 由于Z= X*theta - y是列向量,所以Z'*Z就是平方和连加,就是2范数:如果Z是矩阵呢,那么Z'*Z的对角 ...

  2. 推荐系统实践 0x0b 矩阵分解

    前言 推荐系统实践那本书基本上就更新到上一篇了,之后的内容会把各个算法拿来当专题进行讲解.在这一篇,我们将会介绍矩阵分解这一方法.一般来说,协同过滤算法(基于用户.基于物品)会有一个比较严重的问题,那 ...

  3. 推荐系统之矩阵分解及C++实现

    1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评 ...

  4. 推荐系统之矩阵分解及其Python代码实现

    有如下R(5,4)的打分矩阵:(“-”表示用户没有打分) 其中打分矩阵R(n,m)是n行和m列,n表示user个数,m行表示item个数 那么,如何根据目前的矩阵R(5,4)如何对未打分的商品进行评分 ...

  5. HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法

    一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...

  6. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

  7. Mahout分布式运行实例:基于矩阵分解的协同过滤评分系统(一个命令实现文件格式的转换)

     Apr 08, 2014  Categories in tutorial tagged with Mahout hadoop 协同过滤  Joe Jiang 前言:之前配置Mahout时测试过一个简 ...

  8. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  9. matlab之矩阵分解

    矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permute ...

随机推荐

  1. jquery美化select,自定义下拉框样式

    select默认的样式比较丑,有些应用需要美化select,在网上找到一个很好的美化样式效果,本人很喜欢,在这里分享一下. <!DOCTYPE html PUBLIC "-//W3C/ ...

  2. 怎样使android的view动画循环弹动

    在res中建立文件夹anim,分别写下cycles.xml,shake1.xml,shake2.xml cycles.xml: <?xml version="1.0" enc ...

  3. centos yum 安装问题

    yum [Errno 256] No more mirrors to try 解决方法 输入下面的命令即可解决问题: yum clean all yum makecache 导致 centos安装软件 ...

  4. C# 多线程 简单使用方法以及常用参数

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  5. 【摘抄】Application.StartupPath和System.Environment.CurrentDirectory的区别

    System.Environment.CurrentDirectory的含义是获取或设置当前工作路径,而Application.StartupPath是获取程序启动路径,表面上看二者没什么区别,但实际 ...

  6. 使用WIF实现单点登录Part III —— 正式实战

    我们接下来的demo将包括以下的工程: SiteA —— 基于.net framework 4.5的MVC 4程序,使用WIF 4.5的SDK,第一个RP SiteB —— 基于.net framew ...

  7. selenium+python cooking用法 (转)

    selenium-webdriver(python)--cookie处理 driver.get_cookies() 获得cookie信息 add_cookie(cookie_dict)  向cooki ...

  8. JVM调优总结10-调优方法

    JVM调优工具 Jconsole,jProfile,VisualVM Jconsole : jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用.对垃圾回收算法有很详细的跟踪.详细说明参考这里 ...

  9. 发布web项目时,忽略指定文件夹或文件

    参考:http://blogs.msdn.com/b/webdev/archive/2010/04/22/web-deployment-excluding-files-and-folders-via- ...

  10. Android---WebView显示Html乱码问题

    webView.loadData(result,"text/html","UTF-8"); 反正是用上面的方法无法解决乱码的问题. 使用下面的方法就能完美解决了 ...