sklearn dataset 模块学习
sklearn.datasets官网:http://scikit-learn.org/stable/datasets/
sklearn.datasets 模块主要提供一些导入、在线下载及本地生成数据集的方法,可以通过 dir 或 help 命令查看,会发现主要有三种形式:load_<dataset_name>、fetch_<dataset_name> 及 make_<dataset_name> 的方法
sklearn 的数据集有好多个种
- 自带的小数据集(packaged dataset):sklearn.datasets.load_<name>
- 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name>
- 计算机生成的数据集(Generated Dataset):sklearn.datasets.make_<name>
- svmlight/libsvm格式的数据集:sklearn.datasets.load_svmlight_file(...)
- 从买了data.org在线下载获取的数据集:sklearn.datasets.fetch_mldata(...)
1. dataset.load_<dataset_name>:sklearn包自带的小数据集
数据集文件在 sklearn 安装目录下 datasets\data 文件下
2. datasets.fetch_<dataset_name> :比较大的数据集,主要用于测试解决实际问题,支持在线下载
下载下来的数据,默认保存在~/scikit_learn_data文件夹下,可以通过设置环境变量SCIKIT_LEARN_DATA修改路径,datasets.get_data_home()获取下载路径
3. datasets.make_*?:构造数据集
下面以make_regression()函数为例,首先看看函数语法:
make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
参数说明:
- n_samples:样本数
- n_features:特征数(自变量个数)
- n_informative:相关特征(相关自变量个数)即参与了建模型的特征数
- n_targets:因变量个数
- bias:偏差(截距)
- coef:是否输出coef标识
上述输出结果:元组中的三个数组分别对应输入数据X,输出数据y,coef对应数组。
sklearn dataset 模块学习的更多相关文章
- sklearn datasets模块学习
sklearn.datasets模块主要提供了一些导入.在线下载及本地生成数据集的方法,可以通过dir或help命令查看,我们会发现主要有三种形式:load_<dataset_name>. ...
- Python —— sklearn.feature_selection模块
Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature ex ...
- 使用sklearn进行集成学习——实践
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 Random Forest和Gradient Tree Boosting ...
- 使用sklearn进行集成学习——理论
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? ...
- Day5 - Python基础5 常用模块学习
Python 之路 Day5 - 常用模块学习 本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shel ...
- [转]使用sklearn进行集成学习——理论
转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bag ...
- [转]使用sklearn进行集成学习——实践
转:http://www.cnblogs.com/jasonfreak/p/5720137.html 目录 1 Random Forest和Gradient Tree Boosting参数详解2 如何 ...
- # nodejs模块学习: express 解析
# nodejs模块学习: express 解析 nodejs 发展很快,从 npm 上面的包托管数量就可以看出来.不过从另一方面来看,也是反映了 nodejs 的基础不稳固,需要开发者创造大量的轮子 ...
- 【转】Python模块学习 - fnmatch & glob
[转]Python模块学习 - fnmatch & glob 介绍 fnmatch 和 glob 模块都是用来做字符串匹配文件名的标准库. fnmatch模块 大部分情况下使用字符串匹配查找特 ...
随机推荐
- ltp-fcntl36 偶尔出现fail unexpected data offset 20928 value 94
每次出错的都是和posix相关先把结论说了: fn_ofd_w和fn_ofd_r的SAFE_FCNTL参数F_OFD_SETLKW fn_posix_w和fn_posix_r的SAFE_FCNTL参数 ...
- 纯干货:深度学习实现之空间变换网络-part2
https://www.jianshu.com/p/854d111670b6 纯干货:深度学习实现之空间变换网络-part1 在第一部分中,我们主要介绍了两个非常重要的概念:仿射变换和双线性插值,并了 ...
- redis 入门笔记
http://www.cnblogs.com/xinysu/p/7366142.html
- 斯坦福机器学习ex1.1(python)
使用的工具:NumPy和Matplotlib NumPy是全书最基础的Python编程库.除了提供一些高级的数学运算机制以外,还具备非常高效的向量和矩阵运算功能.这些对于机器学习的计算任务是尤为重要的 ...
- 通过经纬度获取所属城市信息-php
测试经纬度信息,37.863036,113.598909.通过地图查询,所在城市为:阳泉. <?php class test{ public static $test_key = 'dfgfdg ...
- bzoj3932 / P3168 [CQOI2015]任务查询系统(主席树+差分)
P3168 [CQOI2015]任务查询系统 看到第k小,就是主席树辣 对于每一段任务(a,b,k),在版本a的主席树+k,版本b+1的主席树-k 同一时间可能有多次修改,所以开个vector存操作, ...
- netstat -ano输出中的ESTABLISHED off
今天,我们性能测试的环境出现个奇怪现象,通过oci direct load回库的进程似乎僵死了,应用端cpu 200%(两个线程在跑,一个是一直在ocidirectload没反应,另外一个是正在sem ...
- Java 中的多线程你只要看这一篇就够了
引 如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个 ...
- Hibernate properties文件
###################### ### Query Language ### ###################### ## define query language consta ...
- opencv学习之路(11)、图像几何变换
一.图像缩放 #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat src=imread("E:// ...