G - Petya and Graph

思路:

最大权闭合子图

对于每条边,如果它选了,那么它连的的两个点也要选

边权为正,点权为负,那么就是求最大权闭合子图

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const LL INF = 1LL<<;
const int N = 2e3 + ;
int level[N], iter[N];
struct edge {
int to;
LL w;
int rev;
};
vector<edge>g[N];
void add_edge(int u, int v, LL w) {
g[u].pb(edge{v, w, g[v].size()});
g[v].pb(edge{u, , g[u].size()-});
}
void bfs(int s) {
mem(level, -);
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = ; i < g[u].size(); i++) {
edge e = g[u][i];
if(e.w > && level[e.to] < ) {
level[e.to] = level[u] + ;
q.push(e.to);
}
}
}
}
LL dfs(int u, int t, LL f) {
if(u == t ) return f;
for (int &i = iter[u]; i < g[u].size(); i++) {
edge &e = g[u][i];
if(e.w > && level[u] < level[e.to]) {
LL d = dfs(e.to, t, min(f, e.w));
if(d > ) {
e.w -= d;
g[e.to][e.rev].w +=d;
return d;
}
}
}
return ;
}
LL max_flow(int s, int t) {
LL flow = ;
while(true) {
bfs(s);
if(level[t] < ) return flow;
LL f;
mem(iter, );
while ((f = dfs(s, t, INF)) > ) {
flow += f;
}
}
}
int main() {
int n, m, w, u, v;
scanf("%d %d", &n, &m);
int s = , t = n+m+;
for (int i = ; i <= n; i++) {
scanf("%d", &w);
add_edge(i, t, w);
}
LL sum = ;
for (int i = ; i <= m; i++) {
scanf("%d %d %d", &u, &v, &w);
sum += w;
add_edge(i+n, u, INF);
add_edge(i+n, v, INF);
add_edge(s, i+n, w);
}
printf("%lld\n", sum - max_flow(s, t));
return ;
}

Codeforces 1082 G - Petya and Graph的更多相关文章

  1. CodeForces 1082 G Petya and Graph 最大权闭合子图。

    题目传送门 题意:现在有一个图,选择一条边,会把边的2个顶点也选起来,最后会的到一个边的集合 和一个点的集合 , 求边的集合 - 点的集合最大是多少. 题解:裸的最大权闭合子图. 代码: #inclu ...

  2. G. Petya and Graph(经典项目与项目消耗问题)(网络流)

    题:https://codeforces.com/contest/1082/problem/G 题意:给定有边权和点权的图,问你选一些边,然sum边-sum点最大(点权被多次用为公共点只会减一次) 分 ...

  3. CF1082G:G. Petya and Graph(裸的最大闭合权图)

    Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...

  4. CodeForces 1082 D Maximum Diameter Graph

    题目传送门 题意:现在有n个点,每个点的度数最大为di,现在要求你构成一棵树,求直径最长. 题解:把所有度数为2的点先扣出来,这些就是这颗树的主干,也就是最长的距离. 然后我们把度数为2的点连起来,之 ...

  5. Petya and Graph/最大权闭合子图、最小割

    原题地址:https://codeforces.com/contest/1082/problem/G G. Petya and Graph time limit per test 2 seconds ...

  6. Petya and Graph(最小割,最大权闭合子图)

    Petya and Graph http://codeforces.com/contest/1082/problem/G time limit per test 2 seconds memory li ...

  7. [codeforces 549]G. Happy Line

    [codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...

  8. CodeForces 794 G.Replace All

    CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...

  9. NEERC 2016-2017 Probelm G. Game on Graph

    title: NEERC 2016-2017 Probelm G. Game on Graph data: 2018-3-3 22:25:40 tags: 博弈论 with draw 拓扑排序 cat ...

随机推荐

  1. MySQL 常用使用语句

    1)批量删除表 Select CONCAT( 'drop table ', table_name, ';' ) FROM information_schema.tables Where table_n ...

  2. 【题解】Luogu P2522 [HAOI2011]Problem b

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...

  3. 18位身份证验证(Java)加入身份证输入验证是否满足18位代码(修订稿)

    package day20181016; /** * 身份证的验证 34052419800101001X * */ import java.util.Scanner; public class Zuo ...

  4. 《学习OpenCV3》第6章课后习题

    //Exercises at end of Chapter 5,<learning OpenCV3> #include "stdafx.h" #include < ...

  5. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  6. 网络 --- 3 socket模块 粘包

    一 .socket 模块参数及方法 二.缓冲区 三.粘包 1.两种粘包现象 ①连续的小包可能会被优化算法给组合到一起进行发送 ②第一次如果发送的数据大小2000B接收端一次性接受大小为1024, 这就 ...

  7. Java中Map接口的遍历

    package Test4; import java.util.Collection;import java.util.HashMap;import java.util.Iterator;import ...

  8. P4313 文理分科

    思路 遇到这种利益冲突的最终利益最大化问题 考虑转化为最小割,使得损失的价值最小 相当于文科是S,理科是T,选出最小割就是确定损失代价最小的方案 然后就把S向每个点连一条cap=art[i][j]的边 ...

  9. HIHOcoder 1457 后缀自动机四·重复旋律7

    思路 后缀自动机题目,题目本质上是要求求出所有不同的子串的和,SAM每个节点中存放的子串互不相同,所以对于每个节点的sum,可以发现是可以递推的,每个点对子节点贡献是sum[x]*10+c*sz[x] ...

  10. 17秋 SDN课程 第二次上机作业

    1.控制器floodlight所示可视化图形拓扑的截图,及主机拓扑连通性检测截图 拓扑 连通性 2.利用字符界面下发流表,使得'h1'和'h2' ping 不通 流表截图 连通性 3.利用字符界面下发 ...