2018-12-09 22:18:43

假设费用函数 L 与某个参数 x 的关系如图所示:


则最优的 x 在绿点处,x 非零。

现在施加 L2 regularization,新的费用函数()如图中蓝线所示:

最优的 x 在黄点处,x 的绝对值减小了,但依然非零。

而如果施加 L1 regularization,则新的费用函数()如图中粉线所示:

最优的 x 就变成了 0。这里利用的就是绝对值函数的尖峰。

两种 regularization 能不能把最优的 x 变成 0,取决于原先的费用函数在 0 点处的导数。
如果本来导数不为 0,那么施加 L2 regularization 后导数依然不为 0,最优的 x 也不会变成 0。
而施加 L1 regularization 时,只要 regularization 项的系数 C 大于原先费用函数在 0 点处的导数的绝对值,x = 0 就会变成一个极小值点。原因是我们可以对0两边进行求导分别得到f'(0) - C和f‘(0) + C,如果C > f'(0),那么左右两边就会异号,这样的话,0就成了极小值点了。

上面只分析了一个参数 x。事实上 L1 regularization 会使得许多参数的最优值变成 0,这样模型就稀疏了。

L1 正则为什么会使参数偏向稀疏的更多相关文章

  1. L1正则和L2正则的比较分析详解

    原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和 ...

  2. 笔记︱范数正则化L0、L1、L2-岭回归&Lasso回归(稀疏与特征工程)

    机器学习中的范数规则化之(一)L0.L1与L2范数 博客的学习笔记,对一些要点进行摘录.规则化也有其他名称,比如统计学术中比较多的叫做增加惩罚项:还有现在比较多的正则化. -------------- ...

  3. 【机器学习】--鲁棒性调优之L1正则,L2正则

    一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大, ...

  4. 一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法

    Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L ...

  5. L1 正则 和 L2 正则的区别

    L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它 ...

  6. L1正则与L2正则

    L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,可以有以下几种 ...

  7. 【机器学习】--线性回归中L1正则和L2正则

    一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 ...

  8. 贝叶斯先验解释l1正则和l2正则区别

    这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然 ...

  9. 正则-匹配获取url参数

    1.根据指定参数名获取参数值 A页面向连接到B页面的url为: http://www.189dg.com/ajax/sms_query.ashx?action=smsdetail&sid=22 ...

随机推荐

  1. 最菜的小鸟(mkdir -pv)

    命令 mkdir -pv /usr/local/modules/{openjdk,nginx,tomcat,mariadb}/{manifests,files,templates,lib,tests, ...

  2. 【python003-变量】

    变量 一.在使用变量之前,需要先对其进行赋值 二.变量命名的规则:可以包含字母,数字,下划线,但是不能以数字开头 三.字符串: 1.引号内的一切东西 2.python的字符串是要在两边加上引号,对于单 ...

  3. 前端 --- 6 jQuery 初始

    一.引入方式 1.直接下载文件到本地(最常用),从本地中导入 2.使用文件的网络地址,就像我们img标签里面的那个src的用法差不多. 引入完之后,就可以直接使用jQuery的语法来写了,但是还是要写 ...

  4. topcoder srm 709 div1

    1 给定一个长度为n的整数数组A,重排列数组A使得下面计算出的X最大:(n不大于15,A中的大于等于0小于等于50) int X=0; for(int i=0;i<n;++i) X=X+(X^A ...

  5. Python 数据分析 - 索引和选择数据

    loc,iloc,ix三者间的区别和联系 loc .loc is primarily label based, but may also be used with a boolean array. 就 ...

  6. 最后一次谈 VirtualBox的安装方法

    用 VirtualBox....run 或 .rpm安装都可以, 最重要的是要 用 /usr/sbin/vboxconfig -> vboxdrv.sh --> 去创建 VirutalBo ...

  7. fedora安装了phpmyadmin后, mariadb无法启动?

    参考:http://www.linuxidc.com/Linux/2015-10/123945.htm where, which, when,等不但可以用在从句中, 而且可以用在 动词不定式中, 如: ...

  8. P5091 【模板】欧拉定理

    思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...

  9. HDU 3507 Print Article(斜率优化)

    显然的斜率优化模型 但是单调队列维护斜率单调性的时候出现了莫名的锅orz 代码 #include <cstdio> #include <algorithm> #include ...

  10. (zhuan) 自然语言处理中的Attention Model:是什么及为什么

    自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model( ...