C. Maximal Intersection
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1)segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7
Note

In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).

In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3](length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].

题意:给出n个区间,然后你可以删除一个区间,问你剩下的区间的交集的最大长度是多少

思路:我们回到原始的求所有区间的交集,其实就是      距离左边最近的右边界-距离右边最近的左边界

所以这个问题我们可以排个序,然后我们枚举要删除的边界,但是我们范围是10^5     n^2算法肯定不行,但我们又需要遍历,如果是nlogn的话肯定可以

这个时候我们可以考虑set,内有自动排序的功能,也是由红黑树组成优化了时间复杂度,但是说可能会记录重复的,那我们就要使用 multiset,和set的区别就在于能记录重复

然后我们枚举每个删除的区间即可

#include <bits/stdc++.h>
using namespace std;
int l[], r[];
multiset<int> a, b;
int main(){
int n;
scanf("%d", &n);
for(int i=;i<=n;i++){
scanf("%d%d", &l[i], &r[i]);
a.insert(l[i]);
b.insert(r[i]);
}
int ans = ;
for(int i=;i<=n;i++){
a.erase(a.find(l[i]));
b.erase(b.find(r[i]));
ans = max(ans, *b.begin()-*a.rbegin());//取最大
a.insert(l[i]);
b.insert(r[i]);
}
printf("%d\n", ans);
}

还有种 优先队列的写法更加快

#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main() {
int n,l[],r[];
priority_queue<int> ml, mr;
scanf("%d", &n);
for (int i=;i<n;++i) {
scanf("%d %d", l+i, r+i);
ml.push(l[i]);
mr.push(-r[i]);
}
int ans = ;
bool bl, br;
for (int i=;i<n;++i) {
bl = br = ;
if (ml.top()==l[i]) {
bl = ;
ml.pop();
}
if (mr.top()==-r[i]) {
br = ;
mr.pop();
}
ans = max(ans, -mr.top()-ml.top());
if (bl) ml.push(l[i]);
if (br) mr.push(-r[i]);
}
printf("%d\n", ans);
return ;
}

Codeforces Round #506 (Div. 3) C. Maximal Intersection的更多相关文章

  1. Codeforces Round #506 (Div. 3) 题解

    Codeforces Round #506 (Div. 3) 题目总链接:https://codeforces.com/contest/1029 A. Many Equal Substrings 题意 ...

  2. Codeforces Round #506 (Div. 3) D-F

    Codeforces Round #506 (Div. 3) (中等难度) 自己的做题速度大概只尝试了D题,不过TLE D. Concatenated Multiples 题意 数组a[],长度n,给 ...

  3. Codeforces Round #506 (Div. 3) E

    Codeforces Round #506 (Div. 3) E dfs+贪心 #include<bits/stdc++.h> using namespace std; typedef l ...

  4. Codeforces Round #506 (Div. 3) A-C

    CF比赛题解(简单题) 简单题是指自己在比赛期间做出来了 A. Many Equal Substrings 题意 给个字符串t,构造一个字符串s,使得s中t出现k次;s的长度最短 如t="c ...

  5. Codeforces Round #198 (Div. 2) B. Maximal Area Quadrilateral

    B. Maximal Area Quadrilateral time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Codeforces Round #547 (Div. 3) B.Maximal Continuous Rest

    链接:https://codeforces.com/contest/1141/problem/B 题意: 给n个数,0代表工作,1代表休息,求能连续最大的休息长度. 可以连接首尾. 思路: 求普通连续 ...

  7. Codeforces Round #506 (Div. 3)

    题解: div3水的没有什么意思 abc就不说了 d题比较显然的就是用hash 但是不能直接搞 所以我们要枚举他后面那个数的位数 然后用map判断就可以了 刚开始没搞清楚数据范围写了快速乘竟然被hac ...

  8. Codeforces Round #506 (Div. 3) D. Concatenated Multiples

    D. Concatenated Multiples You are given an array aa, consisting of nn positive integers. Let's call ...

  9. Codeforces Round #506 (Div. 3) - D. Concatenated Multiples(思维拼接求是否为k的倍数)

    题意 给你N个数字和一个K,问一共有几种拼接数字的方式使得到的数字是K的倍数,拼接:“234”和“123”拼接得到“234123” 分析: N <= 2e5,简单的暴力O(N^2)枚举肯定超时 ...

随机推荐

  1. 查看cookie的快捷方法

    1.url中输入数字+javascript:alert(document.cookie)   如:2javascript:alert(document.cookie)   ,然后在浏览器中去掉2,回车 ...

  2. Symmetric Tree leetcode java

    问题描述: Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). ...

  3. python-day96--git版本控制

    1. 版本控制工具            - svn            - git 2.  git:软件帮助使用者进行版本的管理 3.  git 相关命令 git init #初始化 初始化后,会 ...

  4. leetcode-algorithms-2 Add Two Numbers

    leetcode-algorithms-2 Add Two Numbers You are given two non-empty linked lists representing two non- ...

  5. 安卓——implements——OnClickListener

    //实现底部的按钮激活监听 设置不同src class click implements OnClickListener{ @Override public void onClick(View v) ...

  6. ORACLE SQL 函数 INITCAP()

    INITCAP() 假设c1为一字符串.函数INITCAP()是将每个单词的第一个字母大写,其它字母变为小写返回. 单词由空格,控制字符,标点符号等非字母符号限制. select initcap('h ...

  7. Oracle 11.2.0.4.0 Dataguard部署和日常维护(1)-数据库安装篇

    本次测试环境 系统版本 CentOS release 6.8 主机名 ec2t-userdata-01 ec2t-userdata-01 IP地址 10.189.102.118 10.189.100. ...

  8. 【Python】基础知识

    一.基本概念 1.变量与运算符 Python允许给多个变量同时赋值,等号 (=) 右边的值将赋予左边对应位置的变量. # 将a, b, c的值依次赋予b, c, a b, c, a = a, b, c ...

  9. 回声TCP服务器端/客户端

    一.TCP服务端 1.TCP服务端的默认函数调用顺序 socket()创建套接字 bind()分配套接字地址 listen()等待请求连接状态 accept()允许连接 read()/write()数 ...

  10. matlab画图变粗脚本

    http://blog.sina.com.cn/s/blog_708637950100uag0.html figure_FontSize=18;set(get(gca,'XLabel'),'FontS ...