C. Maximal Intersection
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1)segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7
Note

In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).

In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3](length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].

题意:给出n个区间,然后你可以删除一个区间,问你剩下的区间的交集的最大长度是多少

思路:我们回到原始的求所有区间的交集,其实就是      距离左边最近的右边界-距离右边最近的左边界

所以这个问题我们可以排个序,然后我们枚举要删除的边界,但是我们范围是10^5     n^2算法肯定不行,但我们又需要遍历,如果是nlogn的话肯定可以

这个时候我们可以考虑set,内有自动排序的功能,也是由红黑树组成优化了时间复杂度,但是说可能会记录重复的,那我们就要使用 multiset,和set的区别就在于能记录重复

然后我们枚举每个删除的区间即可

#include <bits/stdc++.h>
using namespace std;
int l[], r[];
multiset<int> a, b;
int main(){
int n;
scanf("%d", &n);
for(int i=;i<=n;i++){
scanf("%d%d", &l[i], &r[i]);
a.insert(l[i]);
b.insert(r[i]);
}
int ans = ;
for(int i=;i<=n;i++){
a.erase(a.find(l[i]));
b.erase(b.find(r[i]));
ans = max(ans, *b.begin()-*a.rbegin());//取最大
a.insert(l[i]);
b.insert(r[i]);
}
printf("%d\n", ans);
}

还有种 优先队列的写法更加快

#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main() {
int n,l[],r[];
priority_queue<int> ml, mr;
scanf("%d", &n);
for (int i=;i<n;++i) {
scanf("%d %d", l+i, r+i);
ml.push(l[i]);
mr.push(-r[i]);
}
int ans = ;
bool bl, br;
for (int i=;i<n;++i) {
bl = br = ;
if (ml.top()==l[i]) {
bl = ;
ml.pop();
}
if (mr.top()==-r[i]) {
br = ;
mr.pop();
}
ans = max(ans, -mr.top()-ml.top());
if (bl) ml.push(l[i]);
if (br) mr.push(-r[i]);
}
printf("%d\n", ans);
return ;
}

Codeforces Round #506 (Div. 3) C. Maximal Intersection的更多相关文章

  1. Codeforces Round #506 (Div. 3) 题解

    Codeforces Round #506 (Div. 3) 题目总链接:https://codeforces.com/contest/1029 A. Many Equal Substrings 题意 ...

  2. Codeforces Round #506 (Div. 3) D-F

    Codeforces Round #506 (Div. 3) (中等难度) 自己的做题速度大概只尝试了D题,不过TLE D. Concatenated Multiples 题意 数组a[],长度n,给 ...

  3. Codeforces Round #506 (Div. 3) E

    Codeforces Round #506 (Div. 3) E dfs+贪心 #include<bits/stdc++.h> using namespace std; typedef l ...

  4. Codeforces Round #506 (Div. 3) A-C

    CF比赛题解(简单题) 简单题是指自己在比赛期间做出来了 A. Many Equal Substrings 题意 给个字符串t,构造一个字符串s,使得s中t出现k次;s的长度最短 如t="c ...

  5. Codeforces Round #198 (Div. 2) B. Maximal Area Quadrilateral

    B. Maximal Area Quadrilateral time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Codeforces Round #547 (Div. 3) B.Maximal Continuous Rest

    链接:https://codeforces.com/contest/1141/problem/B 题意: 给n个数,0代表工作,1代表休息,求能连续最大的休息长度. 可以连接首尾. 思路: 求普通连续 ...

  7. Codeforces Round #506 (Div. 3)

    题解: div3水的没有什么意思 abc就不说了 d题比较显然的就是用hash 但是不能直接搞 所以我们要枚举他后面那个数的位数 然后用map判断就可以了 刚开始没搞清楚数据范围写了快速乘竟然被hac ...

  8. Codeforces Round #506 (Div. 3) D. Concatenated Multiples

    D. Concatenated Multiples You are given an array aa, consisting of nn positive integers. Let's call ...

  9. Codeforces Round #506 (Div. 3) - D. Concatenated Multiples(思维拼接求是否为k的倍数)

    题意 给你N个数字和一个K,问一共有几种拼接数字的方式使得到的数字是K的倍数,拼接:“234”和“123”拼接得到“234123” 分析: N <= 2e5,简单的暴力O(N^2)枚举肯定超时 ...

随机推荐

  1. linux文件管理之管道与重定向

    ============================================================== 内容提要: 输入输出重定向.管道: 重定向的作用: 文件描述符 0 1 2 ...

  2. 结合canvas和jquery.Jcrop.js裁切图像上传图片

    1.引入的外部资源: jquery.Jcrop.css.jquery.Jcrop.js.upimg.js 2.使用的页面元素 @* 选择照片 *@ <div class="line&q ...

  3. Confluence 6 空间的权限是附加的

    空间的权限是附加的.如果一个用户以个人的方式或者以一个用户组成员的方式赋予了权限,Confluence 将会把这些权限合并在一起.  下面是这个概念的示例... Sasha 是 confluence- ...

  4. python2.7 目录下没有scripts

    1.python2.7 配置环境完成或,python目录下没有scripts目录,先下载setuptools,cmd下载该目录下,输入python setup.py install 2.完成后,pyt ...

  5. Linux系统常见内核问题修复(转发)

    Linux系统常见内核问题修复(转发) 常见Linux系统破坏修复 http://blog.csdn.net/jmilk/article/details/49619587

  6. leetcode-algorithms-1 two sum

    leetcode-algorithms-1 two sum Given an array of integers, return indices of the two numbers such tha ...

  7. cf-914D-线段树

    http://codeforces.com/contest/914/problem/D 题目大意是给出一个数列,进行两种操作,一个是将位置i的数置为x,另一个操作是询问[l,r]内的数的gcd是不是x ...

  8. PostgreSQL进程和内存结构

    PostgreSQL数据库启动时,会先启动一个叫做Postmaster的主进程,还会fork一些辅助子进程,这些辅助子进程各自负责一部分功能,辅助子进程分类如下: $ ps -ef | grep po ...

  9. hadoop -- fsck

    hadoop -- fsck shell命令: hdfs fsck /1708a1 -files -blocks -locations -racks /1708a1:是hdfs 中的文件 查看hdfs ...

  10. [LeetCode] 111. Minimum Depth of Binary Tree ☆(二叉树的最小深度)

    [Leetcode] Maximum and Minimum Depth of Binary Tree 二叉树的最小最大深度 (最小有3种解法) 描述 解析 递归深度优先搜索 当求最大深度时,我们只要 ...