[洛谷U40581]树上统计treecnt

题目大意:

给定一棵\(n(n\le10^5)\)个点的树。

定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边的数量。

求\(\sum_{l=1}^n\sum_{r=l}^nTree[l,r]\)。

思路:

对于每个边考虑贡献,若我们将出现在子树内的点记作\(1\),出现在子树外的点记作\(0\),那么答案就是\(\frac{n(n-1)}2-\)全\(0\)、全\(1\)串的个数。线段树合并,维护前缀/后缀最长全\(0\)/全\(1\)串即可。

时间复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5+1,logN=18;
int n;
int64 ans;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
inline int64 calc(const int &n) {
return 1ll*n*(n-1)/2;
}
struct Node {
int pre[2],suf[2],len;
int64 sum;
Node() {}
Node(const int &l,const bool &v) {
pre[!v]=suf[!v]=0;
pre[v]=suf[v]=len=l;
sum=calc(l);
}
friend Node operator + (const Node &l,const Node &r) {
Node ret;
ret.pre[0]=l.pre[0]+r.pre[0]*(l.pre[0]==l.len);
ret.pre[1]=l.pre[1]+r.pre[1]*(l.pre[1]==l.len);
ret.suf[0]=r.suf[0]+l.suf[0]*(r.suf[0]==r.len);
ret.suf[1]=r.suf[1]+l.suf[1]*(r.suf[1]==r.len);
ret.len=l.len+r.len;
ret.sum=l.sum+r.sum+1ll*l.suf[0]*r.pre[0]+1ll*l.suf[1]*r.pre[1];
return ret;
}
};
class SegmentTree {
#define mid ((b+e)>>1)
private:
Node node[N*logN];
int left[N*logN],right[N*logN];
int sz,new_node() {
return ++sz;
}
int len(const int &b,const int &e) {
return e-b+1;
}
void push_up(const int &p,const int &b,const int &e) {
if(!left[p]) node[p]=Node(len(b,mid),0)+node[right[p]];
if(!right[p]) node[p]=node[left[p]]+Node(len(mid+1,e),0);
if(left[p]&&right[p]) {
node[p]=node[left[p]]+node[right[p]];
}
}
public:
int root[N];
void insert(int &p,const int &b,const int &e,const int &x) {
if(!p) p=new_node();
if(b==e) {
node[p]=Node(1,1);
return;
}
if(x<=mid) insert(left[p],b,mid,x);
if(x>mid) insert(right[p],mid+1,e,x);
push_up(p,b,e);
}
void merge(int &p,const int &q,const int &b,const int &e) {
if(!p||!q) {
p=p|q;
return;
}
if(b==e) return;
merge(left[p],left[q],b,mid);
merge(right[p],right[q],mid+1,e);
push_up(p,b,e);
}
int64 query(const int &p) const {
return node[p].sum;
}
#undef mid
};
SegmentTree t;
void dfs(const int &x,const int &par) {
t.insert(t.root[x],1,n,x);
for(auto &y:e[x]) {
if(y==par) continue;
dfs(y,x);
t.merge(t.root[x],t.root[y],1,n);
}
if(x!=1) ans-=t.query(t.root[x]);
}
int main() {
n=getint();
ans=calc(n)*(n-1);
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
printf("%lld\n",ans);
return 0;
}

[洛谷U40581]树上统计treecnt的更多相关文章

  1. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  2. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  3. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  4. 洛谷P4242 树上的毒瘤

    解:首先有个套路是一条边的权值是[两端点颜色不同].这个用树剖直接维护,支持修改. 每次询问建虚树,查询虚树上每条边的权值.然后树形DP,用开店的方法,每个点链加链查. #include <bi ...

  5. 树上统计treecnt(dsu on tree 并查集 正难则反)

    题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...

  6. 洛谷P2664 树上游戏(点分治)

    传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...

  7. 【刷题】洛谷 P2664 树上游戏

    题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 \[sum_i=\sum_{j=1}^ns(i,j)\] 现在他想让你求出所有 ...

  8. 洛谷——P1608 路径统计

    P1608 路径统计 题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方, ...

  9. 洛谷 P1608 路径统计

    P1608 路径统计 题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方, ...

随机推荐

  1. 字符驱动之二操作方法(struct file_operations)【转】

    转自:http://blog.chinaunix.net/uid-26837113-id-3157515.html 从上一篇我们看到了字符驱动的三个重要结构,那我现在跟大家详细的说说 struct f ...

  2. ubuntu 里切换 gcc,g++ 的版本

    https://askubuntu.com/questions/26498/choose-gcc-and-g-version https://stackoverflow.com/questions/7 ...

  3. springboot系列二、springboot项目搭建

    一.官网快速构建 1.maven构建项目 1.访问http://start.spring.io/ 2.选择构建工具Maven Project.Spring Boot版本2.1.1以及一些工程基本信息, ...

  4. kafka系列六、java管理kafka Topic

    package com.example.demo.topic; import kafka.admin.AdminUtils; import kafka.admin.RackAwareMode; imp ...

  5. 本体【Ontology】综述

    原文地址:http://blog.csdn.net/moonsheep_liu/article/details/22329873 本体作为一种能在语义和知识层次上描述领域概念的建模工具,其目标是捕获相 ...

  6. JS正则表达式大全(附例子)

    0 前言 正则表达式用来字符串匹配,格式校验,非常cool且有趣. 1 正则表达式中的特殊字符 \ 做为转义,即通常在"\"后面的字符不按原来意义解释,如/b/匹配字符" ...

  7. shell expect权威指南和实战

    一.概述 我们通过Shell可以实现简单的控制流功能,如:循环.判断等.但是对于需要交互的场合则必须通过人工来干预,有时候我们可能会需要实现和交互程序如telnet服务器等进行交互的功能.而expec ...

  8. Linux mount 修改文件系统的读写属性

    有时候要在某个文件夹下添加和删除文件时,显示 "read only filesystem",说明该文件系统是只读的不能修改.使用 mount –o remount,rw / 命令可 ...

  9. 性能测试二十八:环境部署之Dubbo部署

    Zookeeper部署 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一 ...

  10. 步步为营-17-FileStream-文件加密/解密

    以前使用的File是操作小的文本文件,用的并不常见,FileStream(操作字节),可以操作所有格式的文件,用途较广泛 下面做一个通过文件流给文件加密解密的小软件. using System; us ...