题意

给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作——操作分两种翻转 \([l,r]\) 区间中的元素、求区间 \([l,r]\) 有多少个不同的子序列。

\(1 \leq n,m \leq 10^5\)

思路

看到这种题目,应该条件反射的去想一下线段树。

但首先还是从一个询问开始,对于一个长度为 \(n\) 的串,设 \(dp_{i,j}\) 为前 \(i\) 位组成的序列中,以 \(j\) 结尾的串的个数,若串的第 \(i\) 位为 \(j\) 有递推式:

\(dp_{i,j}=dp_{i-1,0}+dp_{i-1,1}+1\)

\(dp_{i,!j}=dp_{i-1,!j}\)

上式是以 \(0j,1j\) 结尾的串的个数,加上单独一个\(j\) ;下式则直接转移上一位的信息。

那么将 \(\{dp_{0,0},dp_{0,1},1\}\) 作为初始矩阵,用线段树维护区间对应的转移矩阵即可。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int P=1e9+7;
struct Matrix
{
int n,m,a[4][4];
int *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;res.resize(n,_.m);
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)(res[i][j]+=1ll*a[i][k]*_.a[k][j]%P)%=P;
}
return res;
}
void flip()
{
swap(a[1][1],a[2][2]);
swap(a[1][2],a[2][1]);
swap(a[3][1],a[3][2]);
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
const Matrix Zero=(Matrix){
3,3,
0,0,0,0,
0,1,0,0,
0,1,1,0,
0,1,0,1};
const Matrix One =(Matrix){
3,3,
0,0,0,0,
0,1,1,0,
0,0,1,0,
0,0,1,1};
Matrix nd[N<<2],A;
int tag[N<<2];
char str[N]; void build(int k,int l,int r)
{
tag[k]=0;
if(l==r)
{
if(str[l]=='0')nd[k]=Zero;
else nd[k]=One;
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
nd[k]=nd[k<<1]*nd[k<<1|1];
}
void push_down(int k)
{
if(!tag[k])return;
tag[k<<1]^=1,nd[k<<1].flip();
tag[k<<1|1]^=1,nd[k<<1|1].flip();
tag[k]=0;
}
void update(int k,int L,int R,int l,int r)
{
if(L<=l&&r<=R)
{
tag[k]^=1,nd[k].flip();
return;
}
push_down(k);
int mid=(l+r)>>1;
if(L<=mid)update(k<<1,L,R,l,mid);
if(R>mid)update(k<<1|1,L,R,mid+1,r);
nd[k]=nd[k<<1]*nd[k<<1|1];
}
Matrix query(int k,int L,int R,int l,int r)
{
if(L<=l&&r<=R)return nd[k];
push_down(k);
int mid=(l+r)>>1;
if(R<=mid)return query(k<<1,L,R,l,mid);
else if(L>mid)return query(k<<1|1,L,R,mid+1,r);
else return query(k<<1,L,R,l,mid)*query(k<<1|1,L,R,mid+1,r);
} int main()
{
A.resize(1,3);
A[1][1]=0,A[1][2]=0,A[1][3]=1;
int T,n,Q;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&Q);
scanf("%s",str+1);
build(1,1,n);
int op,x,y;
while(Q--)
{
scanf("%d%d%d",&op,&x,&y);
if(op==1)update(1,x,y,1,n);
else
{
Matrix res=A*query(1,x,y,1,n);
printf("%d\n",(res[1][1]+res[1][2])%P);
}
}
}
return 0;
}

HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)的更多相关文章

  1. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...

  2. HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模

    Multiply game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. HDU 6155 Subsequence Count 线段树维护矩阵

    Subsequence Count Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Oth ...

  4. HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解

    题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...

  5. HDU 6155 Subsequence Count (DP、线性代数、线段树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6155 题解 DP+线代好题.(考场上过多时间刚前两题,没怎么想这题--) 首先列出一个DP式: 设\( ...

  6. THUSCH 2017 大魔法师(矩阵乘法+线段树)

    题意 https://loj.ac/problem/2980 思路 区间修改考虑用线段树维护.由于一段区间的 \(A,B,C\) 可以表示成由原来的 \(A,B,C\) 乘上带上系数再加上某一个某个常 ...

  7. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

  8. ZOJ 2671 Cryptography 矩阵乘法+线段树

    B - Cryptography Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Subm ...

  9. hdu 6155 - Subsequence Count

    话说这题比赛时候过的好少,连题都没读TOT 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i ...

随机推荐

  1. 【转】C#中base关键字的几种用法

    base其实最大的使用地方在面相对性开发的多态性上,base可以完成创建派生类实例时调用其基类构造函数或者调用基类上已被其他方法重写的方法.例如: 2.1关于base调用基类构造函数 public c ...

  2. SQL中的 group by 1, order by 1 语句

    看到group by 1,2 和 order by 1, 2.看不懂,google,搜到了Stack Overflow 上有回答 What does SQL clause “GROUP BY 1” m ...

  3. (Review cs231n) Gradient Vectorized

    注意: 1.每次更新,都要进行一次完整的forward和backward,想要进行更新,需要梯度,所以你需要前馈样本,马上反向求导,得到梯度,然后根据求得的梯度进行权值微调,完成权值更新. 2.前馈得 ...

  4. VI编辑器常用命令

    Linux下的文本编辑器有很多种,vi 是最常用的,也是各版本Linux的标配.注意,vi 仅仅是一个文本编辑器,可以给字符着色,可以自动补全,但是不像 Windows 下的 word 有排版功能. ...

  5. git push跳过用户名和密码认证配置教程

    在使用git commit命令将修改从暂存区提交到本地版本库后,只剩下最后一步将本地版本库的分支推送到远程服务器上对应的分支了,如果不清楚版本库的构成,可以查看我的另一篇,git 仓库的基本结构. 新 ...

  6. linux下VLAN设置

    1. 安装vlan(vconfig)和加载8021q模块 [root@test0001~]#yum install vconfig [root@test0001~]#modprobe 8021q [r ...

  7. 结合sklearn的可视化工具Yellowbrick:超参与行为的可视化带来更优秀的实现

    https://blog.csdn.net/qq_34739497/article/details/80508262 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展 ...

  8. 对gulp的理解和使用(一)

    说的gulp,到底是什么?用来做什么的? 以前并没有想过这个问题,拿到公司的项目脚手架就开始做事情了.现在专门来总结一下. gulp干什么的呢? gulp是node中的一种代码构建工具,还有就是项目自 ...

  9. CI(CodeIgniter)框架下使用非自带类库实现邮件发送

    在项目开发过程中,需要到了邮件提醒功能.首先想到的是CI自身带不带邮件发送类,查看帖子,发现CI本身自带,然后试着利用CI自身带的类库来实现,经过搜搜很多帖子,不少开发者反馈CI自身的Email类有问 ...

  10. VMware环境安装MacOS

    环境: win10专业版 VMware 14 Pro 开始吧 1. 停止服务 2. 解压并管理员权限运行unlocker,目的是使得 win10 环境下的 VMWare14Pro 支持 mac 系统的 ...