P3917 异或序列
暴力前缀异或枚举每一个区间,再求和,60分。
正解:
按每一位来做
对于区间[l,r],如果它对答案有贡献,区间中1的个数一定是奇数,可以按每一位取(1<<i)的前缀和,q[r]-q[l-1]一定是奇数,那只要保证端点值奇偶性不同即可。根据乘法原理,奇数*偶数就是满足条件的区间个数,这个是前缀和。
也可以用前缀异或,道理一样。

 #include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.23
using namespace std;
long long n;
long long a[];
long long cnt;
long long ans;
void in(long long &x)
{
long long y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(long long x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main()
{
in(n);
For(i,,n)
{
in(a[i]);
a[i]^=a[i-];
}
For(i,,)
{
cnt=;
For(j,,n)
if((a[j]>>i)&==)
cnt++;
ans+=cnt*(n-cnt+)*(<<i);
}
o(ans);
return ;
}

P3917 异或序列的更多相关文章

  1. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  2. 「luogu4462」[CQOI2018] 异或序列

    「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...

  3. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  4. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  5. Loj 2534 异或序列

    Loj 2534 异或序列 考虑莫队离线处理.每加一个数,直接询问 \(a[x]\oplus k\) 的前/后缀数目即可,减同理. 利用异或的优秀性质,可以维护异或前缀和,容易做到每次 \(O(1)\ ...

  6. 【BZOJ5301】【CQOI2018】异或序列(莫队)

    [BZOJ5301][CQOI2018]异或序列(莫队) 题面 BZOJ 洛谷 Description 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 ...

  7. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

  8. 【洛谷P3917】异或序列

    题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...

  9. BZOJ_5301_[Cqoi2018]异或序列&&CF617E_莫队

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

随机推荐

  1. [ZJOI2012]波浪弱化版(带技巧的DP)

    题面 \(solution:\) 这道确实挺难的,情况特别多,而且考场上都没想到如何设置状态.感觉怎么设状态不能很好的表示当前情况并转移,考后发现是对全排列的构造方式不熟而导致的,而这一题的状态也是根 ...

  2. Android 常用 adb 命令总结【转】

    原文链接 针对移动端 Android 的测试, adb 命令是很重要的一个点,必须将常用的 adb 命令熟记于心, 将会为 Android 测试带来很大的方便,其中很多命令将会用于自动化测试的脚本当中 ...

  3. DMA及cache一致性的学习心得 --dma_alloc_writecombine【转】

    转自:https://www.cnblogs.com/hoys/archive/2012/02/17/2355914.html 来源:http://xmxohy.blog.163.com/blog/s ...

  4. ERROR 1067 (42000): Invalid default value for 'created_time'【转】

    执行表增加字段语句报错 mysql> ALTER TABLE ha_question ADD COLUMN question_number INT; ERROR (): Invalid defa ...

  5. oracle 存储过程 clob 字段 调试

    clob 没法直接赋值调试,可以新建一个存储过程,赋值给clob字段,然后调试

  6. SonarQube代码质量管理工具安装与使用(sonarqube5.1.2 + sonar-runner-dist-2.4 + MySQL5.x)

    1. SonarQube安装(sonarqube5.1.2 + sonar-runner-dist-2.4) 1.1 前提条件 1) 已安装Java环境(version:1.7+) 2) 已安装MyS ...

  7. FineReport——获取控件值和单元格值

    设置单元格的值(填报预览): //contentPane.setCellValue(1,0,"abc");//参数面板给单元格赋实际值,即可填报 contentPane.curLG ...

  8. 深入理解JS中的变量及变量作用域

    JS的变量有两种,“全局变量”和“局部变量”. “全局变量”声明在函数外部,可供所有函数使用,(全局变量属于window)而“局部变量”声明在函数体内部,只能在定义该变量的函数体内使用. 1.全局变量 ...

  9. webpack 3之hash、chunkhash和contenthash三者的区别

    在使用webpack 3中,文件名的hash值可以有三种hash生成方式,那具体使用哪一种呢? 1.hash 如果都使用hash的话,所有文件的hash都是一样的,而且每次修改任何一个文件,所有文件名 ...

  10. 在vue-cli中引用公共过滤器filter

    在实际项目开发中,在某一组件中声明的全局过滤器Vue.filter并不能在其他组件中使用,所以,我认为只要调用两次以上或者可能会被调用两次以上的过滤器,就应该写入统一个过滤器文件中,方便统一调用.下面 ...