P3917 异或序列
P3917 异或序列
暴力前缀异或枚举每一个区间,再求和,60分。
正解:
按每一位来做
对于区间[l,r],如果它对答案有贡献,区间中1的个数一定是奇数,可以按每一位取(1<<i)的前缀和,q[r]-q[l-1]一定是奇数,那只要保证端点值奇偶性不同即可。根据乘法原理,奇数*偶数就是满足条件的区间个数,这个是前缀和。
也可以用前缀异或,道理一样。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.23
using namespace std;
long long n;
long long a[];
long long cnt;
long long ans;
void in(long long &x)
{
long long y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(long long x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main()
{
in(n);
For(i,,n)
{
in(a[i]);
a[i]^=a[i-];
}
For(i,,)
{
cnt=;
For(j,,n)
if((a[j]>>i)&==)
cnt++;
ans+=cnt*(n-cnt+)*(<<i);
}
o(ans);
return ;
}
P3917 异或序列的更多相关文章
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- Loj 2534 异或序列
Loj 2534 异或序列 考虑莫队离线处理.每加一个数,直接询问 \(a[x]\oplus k\) 的前/后缀数目即可,减同理. 利用异或的优秀性质,可以维护异或前缀和,容易做到每次 \(O(1)\ ...
- 【BZOJ5301】【CQOI2018】异或序列(莫队)
[BZOJ5301][CQOI2018]异或序列(莫队) 题面 BZOJ 洛谷 Description 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
- 【洛谷P3917】异或序列
题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...
- BZOJ_5301_[Cqoi2018]异或序列&&CF617E_莫队
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
随机推荐
- jzoj4313 电话线铺设(最小生成树+最近公共祖先)
题面 \(solution:\) 这道题很奇妙,需要对kruskal重构树有足够的了解!我们先对王牌电缆实行kruskal重构树,然后我们再来枚举每一条李牌电缆,我们将某一条李牌电缆加进这棵树中必然构 ...
- django学习~第四篇
django表单 1 今天继续来学学django的表单 首先介绍下http的方法,这是最基本的 GET 方法 GET一般用于获取/查询 资源信息,以?分割URL和传输数据 ...
- java的一维数组
数组的基础知识: 数组一旦创建,它的的大小是固定的.使用一个数组引用变量,通过下标来访问数组中的元素. 初始化数组的方法: 复制数组的方法: 1.使用循环语句逐个地复制数组的元素 2.使用System ...
- memset()函数
memset需要的头文件 <memory.h> or <string.h> memset <wchar.h> wmemset 函数介绍 void *memset( ...
- 每天一个linux命令【转】
转自:http://www.cnblogs.com/peida/archive/2012/12/05/2803591.html 开始详细系统的学习linux常用命令,坚持每天一个命令,所以这个系列为每 ...
- kafka系列五、kafka常用java API
引入maven包 <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka- ...
- saltstack中如何实现多个master来管理minion
背景: 公司有多个部门,有一些机器有本部门的业务,这些机器也有其他部门的业务,所以本部门需要一个master服务器来管理这批机器,其他部门也需要一个master服务器来管理这个机器,所以就需要多个ma ...
- ubuntu系统下Python虚拟环境的安装和使用
ubuntu系统下Python虚拟环境的安装和使用 前言:进行python项目开发的时候,由于不同的项目需要使用不同的资源包和相关的配置,因此创建多个python虚拟环境,在虚拟环境下开 ...
- IntelliJ IDEA 12:
启动参数-server -Xms1024m -Xmx1024m -XX:NewSize=128m -XX:MaxNewSize=128m -XX:PermSize=128m -XX:MaxPermSi ...
- Coursera台大机器学习技法课程笔记07-Blending and Bagging
这一节讲如何将得到的feature或hypothesis组合起来用于预测. 1. 林老师给出了几种方法 在选择g时,需要选择一个很强的g来确保Eval最小,但如果每个g都很弱该怎么办呢 这个时候可以选 ...