题解:

dp很容易想

f[i][j][s]表示匹配到了i点 对应点为j点,状态为s 那么这样的时间复杂度为(3^n*n^2)

然后会发现这其实可以转化为可以重复利用元素的子集卷积

http://www.cnblogs.com/yinwuxiao/p/8471250.html

因为可以发现那些一定是不满足的
这样是2^n*n^3

然而本人并不怎么会调整常数。。所以就被卡常了------以后再改吧。。

还有就是空间差不多是卡着512mb的

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define sz [18][(1<<17)+10]
ll n,m,f[][],l,lim,pos[<<];
ll head[],dp[]sz,count2[];
struct re{
ll a,b;
}a[];
void arr(ll x,ll y)
{
a[++l].a=head[x];
a[l].b=y;
head[x]=l;
}
ll ff1 sz,ff2 sz,ff3 sz;
void dfs(ll x,ll fa)
{
count2[x]=;
ll u=head[x];
while (u)
{
ll v=a[u].b;
if (v!=fa) dfs(v,x),count2[x]+=count2[v];
u=a[u].a;
}
u=head[x];
memset(ff1,,sizeof(ff1));
memset(ff3,,sizeof(ff3));
for (ll i=;i<=n;i++) ff1[i][<<(i-)]=;
for (ll i=;i<=n;i++) ff3[i][<<(i-)]=;
while (u)
{
ll v=a[u].b;
memset(ff2,,sizeof(ff2));
if (v!=fa)
{
for (ll i=;i<=n;i++)
{
for (ll j=;j<=n;j++)
if (f[i][j])
for (ll k=;k<lim;k++)
ff2[i][k]+=dp[v][j][k];
for (ll j=;j<=n;j++)
for (ll k=;k<lim;k++)
if (k>>(j-)&) ff1[i][k]+=ff1[i][k^(<<(j-))];
for (ll j=;j<=n;j++)
for (ll k=;k<lim;k++)
if (k>>(j-)&) ff2[i][k]+=ff2[i][k^(<<(j-))];
for (ll j=;j<lim;j++) ff3[i][j]=ff2[i][j]*ff1[i][j];
for (ll j=;j<=n;j++)
for (ll k=;k<lim;k++)
if (k>>(j-)&) ff3[i][k]-=ff3[i][k^(<<(j-))];
for (ll k=;k<lim;k++) ff1[i][k]=ff3[i][k];
}
}
u=a[u].a;
}
for (ll i=;i<=n;i++)
for (ll j=;j<lim;j++)
if (pos[j]==count2[x])
dp[x][i][j]=ff3[i][j];
}
int main()
{
freopen("noip.in","r",stdin);
freopen("noip.out","w",stdout);
std::ios::sync_with_stdio(false);
cin>>n>>m; lim=<<n;
for (int i=;i<lim;i++)
{
int cnt=;
for (int j=;j<=n;j++)
if (i>>(j-)&) cnt++;
pos[i]=cnt;
}
memset(f,,sizeof(f));
ll c,d;
for (ll i=;i<=m;i++)
{
cin>>c>>d; f[c][d]=; f[d][c]=;
}
for (ll i=;i<=n-;i++)
{
cin>>c>>d; arr(c,d); arr(d,c);
}
dfs(,);
ll ans=;
for (ll i=;i<=n;i++) ans+=dp[][i][lim-];
cout<<ans<<endl;
}

zjoi 小星星的更多相关文章

  1. BZOJ4596: [Shoi2016]黑暗前的幻想乡

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...

  2. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  3. [ZJOI 2016] 小星星

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 653  Solved: 400[Submit][Status] ...

  4. 【BZOJ 4455】【UOJ #185】【ZJOI 2016】小星星

    http://www.lydsy.com/JudgeOnline/problem.php?id=4455 http://uoj.ac/problem/185 有一个$O(n^n)$的暴力,放宽限制可以 ...

  5. @loj - 2091@ 「ZJOI2016」小星星

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有 ...

  6. BZOJ4455: [Zjoi2016]小星星

    Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这 ...

  7. JS对象实现随机满天小星星实例

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. 【BZOJ-4455】小星星 容斥 + 树形DP

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status] ...

  9. ZJOI day1总结

    虽然没人看,虽然滚了大粗,但还是这样勉励一下自己.. 今年大约是进队无望了. before ZJOI 感觉自己时间很充裕,与lyx大爷一起颓颓颓.. day -3 到xj. day -2 听课.感觉洲 ...

随机推荐

  1. Git与GitHub学习笔记(四)合并远程分支

    在这里的前提: 1.你已经fork 源作者的项目到你自己的仓库了 2.git clone 自己仓库fork的项目,注意地址,这里是自己的账号下的地址,而不是源作者的项目地址哦 3.在本地修改代码,gi ...

  2. Ajax提交请求模板

    function methodName() { var params = { }; var url = ''; jQuery.ajax({ type: 'POST', contentType: 'ap ...

  3. Elastic Job入门(2) - 使用

    运维平台 elastic-job-lite-console-${version}.tar.gz可通过mvn install编译获取,下载源码,进入console目录,执行: mvn clean ins ...

  4. luogu P2779 [AHOI2016初中组]黑白序列

    传送门 注:本题解中下标从1开始 这题可以想出一个\(O(n^2)\)的dp,只要考虑每个偶数位置可以从前面的哪个位置加上一个"B...W..."转移过来 然而数据范围有5e5,, ...

  5. 第16月第10天 poco target

    1. void TCPServer::start() { poco_assert (_stopped); _stopped = false; _thread.start(*this); } void ...

  6. git进阶命令

    首先, clone 一个远端仓库,到其目录下: $ Git clone git://example.com/myproject $ cd myproject 然后,看看你本地有什么分支: $ git ...

  7. dubbo系列一、dubbo背景介绍、微服务拆分

    一.背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 二.传统应用到分布式应用的演进过程 ...

  8. [转]VS2015 Git 源码管理工具简单入门

    VS2015 Git 源码管理工具简单入门   1.VS Git插件 1.1 环境 VS2015+GitLab 1.2 Git操作过程图解 1.3 常见名词解释 拉取(Pull):将远程版本库合并到本 ...

  9. 集成Struts2+Spring+Hibernate_两种方案

    集成Struts2+Spring+Hibernate 第一种方案:让Spring创建Struts2的Action,不让Spring完全管理Struts2的Action      Struts2 Act ...

  10. centos系统初始化流程及实现系统裁剪

    Linux系统的初始化流程: POST:ROM+RAM BIOS: Boot Sequence MBR: 446:bootloader 64: 分区表 2: 5A kernel文件:基本磁盘分区 /s ...