Description

小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。

该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情
报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。
如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就
建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均
与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。
现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭
面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。

Input

第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数

量。接下来 m 行,每行包含三个整数 ui;vi;wi,表示可以建立的通道。最后有 p 行,每行包含
两个整数 ci;di,表示重要情报站的频道和情报站的编号。

Output

输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。

Sample Input

5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4

Sample Output

4

HINT

选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。

对于 100% 的数据,0 <ci <= p <= 10; 0 <ui;vi;di <= n <= 1000; 0 <= m <= 3000; 0 <= wi <=
20000。
 
 
题解:
斯坦纳树变式,只需正常跑一边斯坦纳然后再加特判,这题中F[i][k]中第二维k不再表示k这个状态联通
而表示k状态中,相同频道的站都联通,所以我们最后再合并,避免漏解情况
可以理解为:斯坦纳跑出来的k是两个块用一些边连起来以后的联通块,而此题中一些边可以去掉,只需满足相同频道联通即可
 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=,M=;
int gi(){
int str=;char ch=getchar();
while(ch>'' || ch<'')ch=getchar();
while(ch>='' && ch<='')str=(str<<)+(str<<)+ch-,ch=getchar();
return str;
}
int head[N],num=;
struct Lin{
int next,to,dis;
}a[M<<];
void init(int x,int y,int z){
a[++num].next=head[x];a[num].to=y;a[num].dis=z;head[x]=num;
}
int n,m,col,f[N][<<],P=,tot,INF;
bool vis[N];int q[N*],mod=N*;
void spfa(int k){
int t=,sum=,x,u;
for(int i=;i<=n;i++)
if(f[i][k]!=INF)q[++sum]=i,vis[i]=true;
while(t!=sum){
t++;if(t>=mod)t-=mod;x=q[t];
for(int i=head[x];i;i=a[i].next){
u=a[i].to;
if(f[x][k]+a[i].dis<f[u][k]){
f[u][k]=f[x][k]+a[i].dis;
if(!vis[u]){
vis[u]=true;
sum++;if(sum>=mod)sum-=mod;q[sum]=u;
}
}
}
vis[x]=false;
}
}
int ans[<<];int c[][],ts[<<];
bool check(int states){
for(int i=;i<=;i++){
if(!ts[i])continue;
if((ts[i]&states) && ((states&ts[i])!=ts[i]))return false;
}
return true;
}
void work(){
int x,y,z;
memset(f,/,sizeof(f));INF=f[][];
n=gi();m=gi();col=gi();
for(int i=;i<=m;i++){
x=gi();y=gi();z=gi();
init(x,y,z);init(y,x,z);
}
for(int i=;i<=col;i++){
x=gi();y=gi();
f[y][<<(P++)]=;
c[x][++c[x][]]=P-;
}
for(int i=;i<=;i++)
for(int j=,tmp=c[i][];j<=tmp;j++)
ts[i]|=(<<c[i][j]);
tot=(<<P)-;
for(int s=;s<=tot;s++){
for(int i=;i<=n;i++)
for(int j=(s-)&s;j;j=(j-)&s){
if(f[i][j]+f[i][s-j]<f[i][s]){
f[i][s]=f[i][j]+f[i][s-j];
}
}
spfa(s);
}
memset(ans,/,sizeof(ans));
for(int s=;s<=tot;s++)
for(int i=;i<=n;i++)
if(f[i][s]<ans[s])ans[s]=f[i][s];
for(int s=;s<=tot;s++){
if(!check(s)){
ans[s]=INF;
continue;
}
for(int j=(s-)&s;j;j=(j-)&s){
if(!check(j))continue;
ans[s]=min(ans[s],ans[j]+ans[s-j]);
}
}
printf("%d\n",ans[tot]);
}
int main()
{
freopen("pp.in","r",stdin);
work();
return ;
}

bzoj 4006: [JLOI2015]管道连接的更多相关文章

  1. bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...

  2. bzoj 4006 [JLOI2015]管道连接——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 除了模板,就是记录 ans[ s ] 表示 s 合法的最小代价.合法即保证 s 里同一 ...

  3. BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)

    明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...

  4. BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...

  5. [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1020  Solved: 552[Submit][Statu ...

  6. BZOJ_4006_[JLOI2015]管道连接_斯坦纳树

    BZOJ_4006_[JLOI2015]管道连接_斯坦纳树 题意: 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰. 该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m ...

  7. [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp

    管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...

  8. luogu P3264 [JLOI2015]管道连接

    LINK:管道连接 一张无向图 有P个关键点 其中有K个集合 各个集合要在图中形成联通块 边有边权 求最小代价. 其实还是生成树问题 某个点要和某个点要在生成树中 类似这个意思. 可以发现 是斯坦纳树 ...

  9. BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...

随机推荐

  1. ios中录音功能的实现AudioSession的使用

    这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...

  2. V7000数据恢复(存储文件系统损坏)案例_北亚数据恢复

    我们今天介绍的数据恢复案例是一起 v7000存储文件系统损坏导致的数据丢失,首先简单介绍一下设备基本情况:发生文件系统损坏的是一台挂载在Windows2003服务器上的v7000存储,划分了一个容量为 ...

  3. OpenShift实战(二):OpenShift节点扩容

    1.新增节点信息 增加节点如下,请将xxx改为自己的域名 node6.xxx.net Node 192.168.8.90 8G 20G/60G 4C node7.xxx.net Node 192.16 ...

  4. Spring Security 入门(3-11)Spring Security 的使用-自定义登录验证和回调地址

    配置文件 security-ns.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmln ...

  5. jprofiler配置

    cataline.sh JAVA_OPTS="$JAVA_OPTS -agentlib:jprofilerti=port=8849"JAVA_OPTS="$JAVA_OP ...

  6. mysql 查询select语句汇总

    数据准备: 创建表: create table students( id int unsigned primary key auto_increment not null, name varchar( ...

  7. shiro中CacheManager相关的类结构介绍,提供redis Cache实现

    cacheManager主要用于对shiro中的session.realm中的认证信息.授权信息进行缓存. 1.类结构 2.接口及类介绍 CacheManager 提供根据名字获取cache的作用. ...

  8. python/SQLAchemy

    python/SQLAchemy SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数 ...

  9. Python基础--函数的嵌套和闭包

    一.名称空间和作用域 名称空间:Python所有有关命名的操作都是在操作名称空间,例如变量名,函数名 1.内置名称空间:Python解释器提供好的功能,解释器启动跟着一起启动,是全局作用域 2.全局名 ...

  10. zoj 3981 Balloon Robot

    https://vjudge.net/problem/ZOJ-3981 题意: 有m个座位,其中n个队伍坐在这些位置上,一个队伍一个座位.当一个队A了题之后,他们们会得到气球,假设他们在a时刻A题,但 ...