【Halum操作-UVA 11478】
·英文题,述大意:
输入有向图一个(什么边的端点啊,边权啊)。每次可以选择一个节点和一个整数,然后把这个结点的出边边权加上该整数,入边边权减去该整数,目标:使得所有边的最小值非负且尽量大。
·分析:
修改结点周围的边权,题目中既没有限制次数,也没有规定在意先后顺序,这启示我们,每一个操作的效果是可以叠加的(同时就不分先后),所以可以将题目简化为:每一个节点只用一个整数操作一次。
差分约束的思想运用:如果我们设num(u)表示给节点u施加的那个整数值。则对于有向边(u,v)(权值为W),那么最终该边的边权为:
W'=W+num(u)-num(v)
读题目最后一句话,可以体会到这是一个美妙的二分。如果当前二分的值是X,表示最小边权。那么对于每一条边,都满足这个式子:
W+num(u)-num(v)>=X
=> num(v)-num(u)<=W-X
由于W-X在此时为定值,设P=W-X那么这些不等式都可以统一描述为:左边小于等于右边,左边两个节点信息之差,右边是一个定值。
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<cstring>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;~i;i=e[i].next,v=e[i].v)
#define inf 1000000000
#define mem(a,b) memset(a,b,sizeof(a))
;];
int n,m,head[N],k,max_W=-inf,ans,d[N],update_times[N];
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;}
bool SPFA(int x)
{
queue<};
go(i,,n)d[i]=update_times[i]=,q.push(i),inq[i]=;
;
fo(i,head,u)if(d[u]+e[i].w-x<d[v]){d[v]=d[u]+e[i].w-x;
;
);}}};
}
int main(){while(~scanf("%d%d",&n,&m))
{
mem(head,-);k=;ans=-;
go(i,,m){int u,v,w;scanf("%d%d%d",&u,&v,&w);
max_W=max(max_W,w);ADD(u,v,w);}
,r=max_W+,mid;
,SPFA(mid)?ans=mid,l=mid+:r=mid-;
){printf("Infinite\n");continue;}
){printf("No Solution\n");continue;}
printf("%d\n",ans);
};}//Paul_Guderian
已经忘了回去的道路,走入独自一人的碎梦。————汪峰《碎梦》
【Halum操作-UVA 11478】的更多相关文章
- UVA - 11478 - Halum(二分+差分约束系统)
Problem UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...
- 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)
layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...
- Uva 11478 Halum操作
题目链接:http://vjudge.net/contest/143318#problem/B 题意:给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权 ...
- UVA 11478 Halum
Halum Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 114 ...
- UVA 11478 Halum(用bellman-ford解差分约束)
对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...
- UVA 11478 Halum(差分约束)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...
- UVA 11478 Halum (差分约束)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- Halum UVA - 11478 差分约束
输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...
- UVA - 11478 Halum 二分+差分约束
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...
随机推荐
- 20145237 《Java程序设计》第10周学习总结
20145237 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 •网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来. •java.n ...
- 洛谷P2894 [USACO08FEB]酒店Hotel
P2894 [USACO08FEB]酒店Hotel https://www.luogu.org/problem/show?pid=2894 题目描述 The cows are journeying n ...
- 前端面试题之css
1.请列出几个具有继承特性的css属性 font-family font-size color line-height text-align text-indent 2.阐述display: ...
- excel2003和excel2007文件的创建和读取
excel2003和excel2007文件的创建和读取在项目中用的很多,首先我们要了解excel的常用组件和基本操作步骤. 常用组件如下所示: HSSFWorkbook excel的文档对象 HSSF ...
- .net mvc 利用分部视图局部刷新.
页面利于$.Ajax: $(function(){ $("#btnpartview").click(function () { var model = []; model.push ...
- mingw打dll ,lib包命令和调用
1,下面的命令行将这个代码编译成 dll. gcc mydll.c -shared -o mydll.dll -Wl,--out-implib,mydll.lib 其中 -shared 告诉gcc d ...
- 扩展Microsoft Graph数据结构 - 架构扩展
前言 此前我有一篇 文章 讲解了Microsoft Graph的一种数据扩展技术-- 开发扩展(Open Extensions),它可以实现在支持的对象(例如用户,组等)上面附加任意的数据.但开放扩展 ...
- docker实践3
我的docker学习笔记3 $docker run ubuntu echo'hello world' $docker run -i -t ubuntu /bin/bash #ps -ef #exi ...
- gradle入门(1-6)将Java项目从maven迁移到gradle
gradle项目与maven项目相互转化(转) 转自: http://www.cnblogs.com/yjmyzz/p/gradle-to-maven.html 一.maven项目->gradl ...
- 脱upx壳--初试--单步追踪
脱upx壳--初试--单步追踪 这里的练习题目是reversing.kr 的Easy Crack 我自己用upx加壳工具给它加了个壳,由于原文件逻辑简单,所以用它来练练手 之后用到的工具是IDA和Ol ...