题链:

http://poj.org/problem?id=3237

题解:

LCT

说一说如何完成询问操作就好了(把一条链的边权变成相反数的操作可以类比着来):

首先明确一下,我们把边权下放到点上。

(由于不存在合并,即不需要MovetoRoot操作,也就是说不需要改变树的形态,让它成为以1为根的有根树即可)

对于询问的a,b之间链上的最大值,

我们首先调用Access(b)函数,让b和根之间形成一条重链,

然后对x=a执行类似Access的过程,直到某一刻发现fa[x]==0时,

则表明现在的x是在b到根的路径上,或者说,此时的x点是a,b的最近公共祖先lca,

所以直接返回y子树和ch[x][1]子树的最大值就好了。

建议结合代码理解:

int Query(int x,int y){
static int ret; Access(y);
for(y=0;x;y=x,x=fa[x]){
Splay(x);
if(fa[x]) ch[x][1]=y;
else ret=max(maxi[y],maxi[ch[x][1]]);
Pushup(x);
}
return ret;
}

其他就没什么好说的了,都比较常规。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 10050
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXN*2],nxt[MAXN*2],val[MAXN*2],head[MAXN],ent;
void Reset(){ent=2; memset(head,0,sizeof(head));}
void Adde(int u,int v,int w){
to[ent]=v; val[ent]=w;
nxt[ent]=head[u]; head[u]=ent++;
}
}E;
int belong[MAXN];
int Case,N;
struct LCT{
int ch[MAXN][2],fa[MAXN];
int maxi[MAXN],mini[MAXN],w[MAXN],lazy[MAXN];
void Reset(){
memset(ch,0,sizeof(ch));
memset(lazy,0,sizeof(lazy));
maxi[0]=-INF; mini[0]=INF;
}
bool Which(int x){return ch[fa[x]][1]==x;}
bool Isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
void Pushup(int x){
maxi[x]=max(w[x],max(maxi[ch[x][0]],maxi[ch[x][1]]));
mini[x]=min(w[x],min(mini[ch[x][0]],mini[ch[x][1]]));
}
void Opposite(int x){ w[x]*=-1; maxi[x]*=-1; mini[x]*=-1;
swap(maxi[x],mini[x]);
lazy[x]^=1;
}
void Pushdown(int x){
if(!Isroot(x)) Pushdown(fa[x]);
if(!lazy[x]) return;
Opposite(ch[x][0]); Opposite(ch[x][1]);
lazy[x]^=1;
}
void Rotate(int x){
static int y,z,l1,l2;
y=fa[x]; z=fa[y];
l1=Which(x); l2=Which(y); fa[x]=z;
if(!Isroot(y)) ch[z][l2]=x;
fa[ch[x][l1^1]]=y; fa[y]=x;
ch[y][l1]=ch[x][l1^1]; ch[x][l1^1]=y;
Pushup(y);
}
void Splay(int x){
static int y; Pushdown(x);
for(;y=fa[x],!Isroot(x);Rotate(x))
if(!Isroot(y)) Rotate(Which(x)==Which(y)?y:x);
Pushup(x);
}
void Access(int x){
static int y;
for(y=0;x;y=x,x=fa[x])
Splay(x),ch[x][1]=y,Pushup(x);
}
void Change(int i,int v){
static int x; x=belong[i];
Splay(x); w[x]=v; Pushup(x);
}
void Negate(int x,int y){
Access(y);
for(y=0;x;y=x,x=fa[x]){
Splay(x);
if(fa[x]) ch[x][1]=y;
else Opposite(y),Opposite(ch[x][1]);
Pushup(x);
}
}
int Query(int x,int y){
static int ret; Access(y);
for(y=0;x;y=x,x=fa[x]){
Splay(x);
if(fa[x]) ch[x][1]=y;
else ret=max(maxi[y],maxi[ch[x][1]]);
Pushup(x);
}
return ret;
}
}DT;
void DFS(int u,int dad){
DT.fa[u]=dad;
for(int i=E.head[u];i;i=E.nxt[i]){
int v=E.to[i]; if(v==dad) continue;
belong[i>>1]=v; DT.maxi[v]=DT.mini[v]=DT.w[v]=E.val[i];
DFS(v,u);
}
}
int main(){
int a,b,c; char cmd[10];
for(scanf("%d",&Case);Case;Case--){
DT.Reset(); E.Reset();
scanf("%d",&N);
for(int i=1;i<N;i++){
scanf("%d%d%d",&a,&b,&c);
E.Adde(a,b,c); E.Adde(b,a,c);
}
DFS(1,0);
while(~scanf("%s",cmd)){
if(cmd[0]=='D') break;
scanf("%d%d",&a,&b);
if(cmd[0]=='Q') printf("%d\n",DT.Query(a,b));
else if(cmd[0]=='C') DT.Change(a,b);
else DT.Negate(a,b);
}
}
return 0;
}

  

●POJ 3237 Tree的更多相关文章

  1. poj 3237 Tree [LCA] (树链剖分)

    poj 3237 tree inline : 1. inline 定义的类的内联函数,函数的代码被放入符号表中,在使用时直接进行替换,(像宏一样展开),没有了调用的开销,效率也很高. 2. 很明显,类 ...

  2. poj 3237 Tree(树链拆分)

    题目链接:poj 3237 Tree 题目大意:给定一棵树,三种操作: CHANGE i v:将i节点权值变为v NEGATE a b:将ab路径上全部节点的权值变为相反数 QUERY a b:查询a ...

  3. poj 3237 Tree 树链剖分

    题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...

  4. POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

    题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...

  5. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  6. POJ 3237 Tree (树链剖分)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 2825   Accepted: 769 Description ...

  7. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  8. poj 3237 Tree 树链剖分+线段树

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  9. POJ 3237 Tree 【树链剖分】+【线段树】

    <题目链接> 题目大意: 给定一棵树,该树带有边权,现在对该树进行三种操作: 一:改变指定编号边的边权: 二:对树上指定路径的边权全部取反: 三:查询树上指定路径的最大边权值. 解题分析: ...

随机推荐

  1. js计时功能

    //个位秒加 function time4jia() { //分钟60为上限 所有加停止 if (sz(a('time1').innerHTML) == 6) { return; } var m4 = ...

  2. C语言——第二次作业(2)

    作业要求一 PTA作业的提交列表 作业要求二 题目1.删除字符串中数字字符(函数题) 1.设计思路 - (1)算法 第一步:调用定义的函数. 第二步:定义i=0.j=0,i为原字符数组角标,j为删除后 ...

  3. JAVA_SE基础——59.权限访问修饰符

    了解了包的概念,就可以系统的介绍Java中的访问控制级别.在Java中,针对类.成员方法和属性提供了四种访问级别,分别是private.default.protected和public. 权限访问修饰 ...

  4. Python 列表嵌套多种实现方式

    #coding=utf-8 list=[] for i in range(1,101): list.append(i) # print(list) tempList=[] newList=[] whi ...

  5. typedef 使用

    1,C 语言提供了 typedef 关键字,您可以使用它来为类型取一个新的名字. #include<stdio.h> typedef unsigned char BYTE; int mai ...

  6. Hey,man,are you ok? -- 关于心跳、故障监测、lease机制

    电话之于短信.微信的一个很大的不同点在于,前者更加及时,有更快速直接的反馈:而后面两个虽然称之为instant message,但经常时发出去了就得等对方回复,等多久是不确定的.打电话能明确知道对方在 ...

  7. Tomcat性能优化及JVM内存工作原理

    Java性能优化原则:代码运算性能.内存回收.应用配置(影响Java程序主要原因是垃圾回收,下面会重点介绍这方面) 代码层优化:避免过多循环嵌套.调用和复杂逻辑. Tomcat调优主要内容如下: 1. ...

  8. SpringCloud的Hystrix(二) 某消费者应用(如:ui、网关)访问的多个微服务的断路监控

    一.验证断路保护监控是否管理多个消费者 app 1.第1个消费者应用:访问自己封装rest服务 saleProd 2.第2个消费者应用:第二个应用没有反应 说明 1.每个应用实例的断路保护机制,只对本 ...

  9. 超简单的jQuery前台分页,不需导包

    今天我们介绍一个不需要导分页包的,非常容易上手的分页+模糊查询功能.接下来先介绍分页功能: 首先第一步,你要有个要去分页的列表.我这里敲了个简单的图书管理,作为展示的基础,它的列表为异步提交,由两部分 ...

  10. Qt QFile文件读写

    QFile 需要添加 #Include  <QFile> 集成至QIODevice 打开一个文件有3种方式QIODevice::(ReadOnly/WriteOnly/ReadWrite) ...