Description

你被要求设计一个计算器完成以下三项任务:

1、给定y、z、p,计算y^z mod p 的值;

2、给定y、z、p,计算满足xy ≡z(mod p)的最小非负整数x;

3、给定y、z、p,计算满足y^x ≡z(mod p)的最小非负整数x。

为了拿到奖品,全力以赴吧!

Input

输入文件calc.in 包含多组数据。

第一行包含两个正整数T、L,分别表示数据组数和询问类型(对于一个测试点内的所有数

据,询问类型相同)。

以下T 行每行包含三个正整数y、z、p,描述一个询问。

Output

输出文件calc.out 包括T 行.

对于每个询问,输出一行答案。

对于询问类型2 和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”。

Sample Input#1

3 1

2 1 3

2 2 3

2 3 3

Sample Output#1

2

1

2

Sample Input#2

3 2

2 1 3

2 2 3

2 3 3

Sample Output#2

2

1

0

Sample Input#3

4 3

2 1 3

2 2 3

2 3 3

2 4 3

Sample Output#3

0

1

Orz, I cannot find x!

0

Hint

对于20%的数据,K=1

对于35%的数据,K=2

对于45%的数据,K=3

对于100%的数据,\(为质数1 \leq y,z,P \leq 10^9 ,P为质数,1 \leq T \leq 10\).

Solution

对于K=1 快速幂即可。

对于K=2 移项得$x \equiv \frac{z}{y}\ (mod\ p) \Rightarrow x \equiv zy^{-1}\ (mod\ p) $求逆元即可。

对于K=3,bsgs即可。

介绍一下包身工树(Baby steps Giant steps):

根据欧拉定理,答案显然不超过\(\varphi(p)\) ,即\(p-1\).

考虑分块作答,确定一个阈值K,设x=aK+b,那么\(y^{aK+b} \equiv z\ (mod \ p) \Leftrightarrow y^{ak} \equiv zy^{-b}\ (mod\ p)\)

显然\(b\)的取值只有k种,\(a\)的取值只有\(p/k\)种,预处理出同余式右边,扔到数据结构维护一下,然后枚举左边check计算即可,记得优先保证答案最小。bsgs的优化:上述是要求逆元的,事实上,将\(x\)设为\(aK-b\)就可以巧妙的避免逆元了。显然在\(K=\sqrt {\varphi(p)}\) 时,时间复杂度最优。

Code

#include <stdio.h>
#include <math.h>
#include <map>
#define R register
#define ll long long
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<1)+(x<<3)+c-'0');
return f?-x:x;
}
int T,tp,y,z,p;
std::map<int,int> mp;
inline int pw(int x,int k,int p){
R int res=1;
for (; k; k>>=1,x=(ll)x*x%p) if (k&1) res=(ll)res*x%p;
return res;
}
inline void bsgs(int y,int z,int p){
if (y==0&&z==0) return (void)(puts("1"));
if (y==0) return (void)(puts("Orz, I cannot find x!"));
R int m=sqrt(p)+0.5;mp.clear();R int tmp=0;for (R int i=0; i<=m; ++i){
if (i==0) {tmp=z%p; mp[tmp]=0; continue;}
tmp=(ll)tmp*y%p;
mp[tmp]=i;
}R int t=pw(y,m,p);tmp=1;
for (R int i=1; i<=m; ++i){
tmp=(ll)tmp*t%p;
if (mp.count(tmp)){
R ll ans=((ll)i*m)-mp[tmp];
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return;
}
}puts("Orz, I cannot find x!");return;
}
int main(){
T=read(),tp=read();
while(T--){
y=read(),z=read(),p=read();y%=p;
if (tp==1) printf("%d\n",pw(y,z,p));
else if (tp==2){
z%=p;if (y==0&&z!=0) puts("Orz, I cannot find x!");
else printf("%lld\n",(ll)z*pw(y,p-2,p)%p);
}else bsgs(y,z,p);
}
}

【BZOJ2242】【SDOI2011】计算器的更多相关文章

  1. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  2. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  3. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  5. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  6. 【数学 BSGS】bzoj2242: [SDOI2011]计算器

    数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...

  7. [bzoj2242][SDOI2011][计算器] (Baby-Step-Giant-Step+快速幂+exgcd)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  8. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  9. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...

  10. bzoj千题计划246:bzoj2242: [SDOI2011]计算器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2242 #include<map> #include<cmath> #incl ...

随机推荐

  1. 20162330 实验四 《Android程序设计》 实验报告

    2016-2017-2 实验报告目录: 1 2 3 4 5 20162330 实验四 <Android程序设计> 实验报告 课程名称:<程序设计与数据结构> 学生班级:1623 ...

  2. transient 与 volatile 笔记

    1. transient 词义:瞬间的,短暂的 首先说说"序列化",把一个对象的表示转化为字节流的过程称为串行化(也称为序列化,serialization),从字节流中把对象重建出 ...

  3. 201621123062《Java程序设计》第一周学习总结

    1.本周学习总结 关键词: 初步熟悉Java的基本组成.语言特点(简单性.结构中立性).运行环境.简单语法等. 关键概念之间的联系: 1.JVM是Java程序唯一认识的操作系统,其可执行文件为.cla ...

  4. 20162327WJH程序设计与数据结构第七周总结

    学号 20162327 <程序设计与数据结构>第7周学习总结 教材学习内容总结 1.关于接口的理解:接口可以理解为比较纯粹的抽象类 2.接口的特点:用interface定义接口 接口中的方 ...

  5. Linux系统安装gcc/g++详细过程

    下载: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/gcc-4.5.1.tar.bz2 浏览: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/ ...

  6. zookeeper 启动失败 BindException: Address already in use 或者Error contacting service. It is probably not running

    平台:centos-6.3-i386 jdk-7u51 storm 0.9.1 python 2.6.6   hadoop 1.2.1 今天上午装storm的时候遇到这个问题,好郁闷.把网上介绍的方法 ...

  7. day-4 python多进程编程知识点汇总

    1. python多进程简介 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,他提供了一 ...

  8. tomcat下的web.xml和项目中的web.xml

    Tomcat 服务器中存在一个web.xml文件 在项目文件夹中同样存在一个web.xml文件 那这两个文件有什么区别呢? tomcat中的web.xml是通用的,如果不设置,那么就会默认是同tomc ...

  9. 关于PHP7

    目前一直使用php7也看了许多文档视频等,整理一下相关细节(仅为记录-),对于PHP7性能,如下图所示. * 在wordpress3.0.1中 php7比php5.6性能提升约3倍左右 新特性 一.变 ...

  10. Python内置函数(49)——isinstance

    英文文档: isinstance(object, classinfo) Return true if the object argument is an instance of the classin ...