题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3545

http://www.lydsy.com/JudgeOnline/problem.php?id=3551(同题,强制在线,题解)

题解:

最小生成树 Kruskal,线段树(合并),离线
首先把询问和边放在一起,按权值大小从小到大排序。
然后对每个点建一棵权值线段树,维护当前联通块里的海拔权值区间内的山的个数
然后按照 Kruskal 算法合并联通块,并且合并两个联通块对应的线段树(Merge操作看代码,感觉很暴力)。
然后对于一个枚举到的询问,其起点所在的联通块里的点一定是可以到达的,
所以就用线段树查询该联通块里的第k高的山就好了。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100500
using namespace std;
struct Oper{
int type,w,a,b;
bool operator <(const Oper &rtm) const{
if(w!=rtm.w) return w<rtm.w;
return type<rtm.type;
}
}O[MAXN*10];
struct SGT{
int rt[MAXN],ls[MAXN*50],rs[MAXN*50],cnt[MAXN*50],sz;
void Modify(int &u,int l,int r,int p){
if(!u) u=++sz;
if(l==r){cnt[u]++; return;}
int mid=(l+r)>>1; cnt[u]++;
if(p<=mid) Modify(ls[u],l,mid,p);
else Modify(rs[u],mid+1,r,p);
}
int Merge(int u,int v){
if(!u||!v) return u+v;
cnt[u]+=cnt[v];
ls[u]=Merge(ls[u],ls[v]);
rs[u]=Merge(rs[u],rs[v]);
return u;
}
int Query(int u,int l,int r,int p){
if(l==r) return l;
int mid=(l+r)>>1;
if(p<=cnt[rs[u]]) return Query(rs[u],mid+1,r,p);
else return Query(ls[u],l,mid,p-cnt[rs[u]]);
}
}T;
int Fa[MAXN],H[MAXN],ANS[5*MAXN];
int N,M,Q,Ont;
void read(int &x){
static int f; static char ch;
x=0; f=1; ch=getchar();
while(ch<'0'||'9'<ch){if(ch=='-') f=-1; ch=getchar();}
while('0'<=ch&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
x=x*f;
}
int find(int x){
return x==Fa[x]?x:Fa[x]=find(Fa[x]);
}
int main(){
static int tmp[MAXN],tnt=0;
read(N); read(M); read(Q);
for(int i=1;i<=N;i++)
Fa[i]=i,read(H[i]),tmp[++tnt]=H[i];
for(int i=1;i<=M;i++)
read(O[++Ont].a),read(O[Ont].b),read(O[Ont].w),O[Ont].type=0;
for(int i=1;i<=Q;i++)
read(O[++Ont].a),read(O[Ont].w),read(O[Ont].b),O[Ont].type=i;
sort(tmp+1,tmp+tnt+1); tnt=unique(tmp+1,tmp+tnt+1)-tmp-1;
for(int i=1;i<=N;i++)
H[i]=lower_bound(tmp+1,tmp+tnt+1,H[i])-tmp,
T.Modify(T.rt[i],1,tnt,H[i]);
sort(O+1,O+Ont+1);
for(int i=1,f,fa,fb,p;i<=Ont;i++){
if(O[i].type){
f=find(O[i].a);
if(T.cnt[T.rt[f]]<O[i].b)
ANS[O[i].type]=-1;
else p=T.Query(T.rt[f],1,tnt,O[i].b),ANS[O[i].type]=tmp[p];
}
else{
fa=find(O[i].a); fb=find(O[i].b);
if(fa==fb) continue; Fa[fb]=fa;
T.rt[fa]=T.Merge(T.rt[fa],T.rt[fb]);
}
}
for(int i=1;i<=Q;i++) printf("%d\n",ANS[i]);
return 0;
}

●BZOJ 3545 [ONTAK2010]Peaks(离线)的更多相关文章

  1. BZOJ 3545: [ONTAK2010]Peaks( BST + 启发式合并 + 并查集 )

    这道题很好想, 离线, 按询问的x排序从小到大, 然后用并查集维护连通性, 用平衡树维护连通块的山的权值, 合并就用启发式合并.时间复杂度的话, 排序是O(mlogm + qlogq), 启发式合并是 ...

  2. BZOJ 3545: [ONTAK2010]Peaks [Splay启发式合并]

    3545: [ONTAK2010]Peaks 题意:带权图,多组询问与一个点通过边权\(\le x\)的边连通的点中点权k大值 又读错题了,输出点一直WA,问的是点权啊 本题加强版强制在线了,那这道题 ...

  3. BZOJ 3545: [ONTAK2010]Peaks 启发式合并 + 离线 + Splay

    Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询 ...

  4. BZOJ.3545.[ONTAK2010]Peaks(线段树合并)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solut ...

  5. bzoj 3545: [ONTAK2010]Peaks

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1124  Solved: 304[Submit][Status][Discuss] Descripti ...

  6. bzoj 3545: [ONTAK2010]Peaks Kruskal重构树

    题目: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...

  7. BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]

    3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...

  8. BZOJ 3551/3545: [ONTAK2010]Peaks加强版 (Kruskal树+dfs序上的主席树+倍增)

    Orz PoPoQQQ 学到了维护子树信息的时候用dfsdfsdfs序套主席树节省线段树空间. 学到了怎么用指针写可持久化线段树-emmm- CODE 只贴上3551加强版带强制在线的代码 #incl ...

  9. bzoj 3551: [ONTAK2010]Peaks加强版

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

随机推荐

  1. org.hibernate.hibernate.connection.release_mode

    org.hibernate.connection包的主要封装了通过JDBC来连接数据库的操作,用户可以以数据源的方式,或者通过特定数据库驱动的方式,甚至是自己定义连接类的方式来完成数据库的连接操作,包 ...

  2. UVA 10622 Perfect P-th Powers

    https://vjudge.net/problem/UVA-10622 将n分解质因数,指数的gcd就是答案 如果n是负数,将答案除2至奇数 原理:(a*b)^p=a^p*b^p #include& ...

  3. The method getTextContent() is undefined for the type Node

    eclipse 中 如果加入了 其他了xfire 等其他xml解析包的话,使用org.w3c.dom.Node下的getTextContent()方法会出现The method getTextCont ...

  4. 机器学习中 K近邻法(knn)与k-means的区别

    简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异 ...

  5. salesforce零基础学习(八十七)Apex 中Picklist类型通过Control 字段值获取Dependent List 值

    注:本篇解决方案内容实现转自:http://mysalesforceescapade.blogspot.com/2015/03/getting-dependent-picklist-values-fr ...

  6. OpenShift实战(三):OpenShift持久化存储Registry

    1.查看Registry组件的DC关于volume的定义 可以看到registry-storage这个挂载点被指向了一个/registry目录,使用的是empty directory,即数据保存在计算 ...

  7. Spring AOP AspectJ

    本文讲述使用AspectJ框架实现Spring AOP. 再重复一下Spring AOP中的三个概念, Advice:向程序内部注入的代码. Pointcut:注入Advice的位置,切入点,一般为某 ...

  8. 关于阿里巴巴iconfont的使用方法

    iconfont网址:http://www.iconfont.cn/ 说起iconfont,做前端开发的应该知道它的好处,图标库之丰富,只有你想不到的,没有你找不到的,而且轻量高清.用户在iconfo ...

  9. global文件中的application_start方法中做: 定时器

    <%@ Application Language="C#" %> <%@ import Namespace="System.Data" %&g ...

  10. java的分数类

    概述 分数类在算法中非常重要, 而在java中不那么重要,java基础类库提供 了biginteger了,提供类似方式, package 组合数学; public class Fraction { p ...