Given a 2D board and a list of words from the dictionary, find all words in the board.

Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example:

Input:
board = [
['o','a','a','n'],
['e','t','a','e'],
['i','h','k','r'],
['i','f','l','v']
]
words = ["oath","pea","eat","rain"] Output: ["eat","oath"]

Note:

  1. All inputs are consist of lowercase letters a-z.
  2. The values of words are distinct.

You would need to optimize your backtracking to pass the larger test. Could you stop backtracking earlier?

If the current candidate does not exist in all words' prefix, you could stop backtracking immediately. What kind of data structure could answer such query efficiently? Does a hash table work? Why or why not? How about a Trie? If you would like to learn how to implement a basic trie, please work on this problem: Implement Trie (Prefix Tree) first.

这道题是在之前那道 Word Search 的基础上做了些拓展,之前是给一个单词让判断是否存在,现在是给了一堆单词,让返回所有存在的单词,在这道题最开始更新的几个小时内,用 brute force 是可以通过 OJ 的,就是在之前那题的基础上多加一个 for 循环而已,但是后来出题者其实是想考察字典树的应用,所以加了一个超大的 test case,以至于 brute force 无法通过,强制我们必须要用字典树来求解。LeetCode 中有关字典树的题还有 Implement Trie (Prefix Tree) 和 Add and Search Word - Data structure design,那么我们在这题中只要实现字典树中的 insert 功能就行了,查找单词和前缀就没有必要了,然后 DFS 的思路跟之前那道 Word Search 基本相同,请参见代码如下:

class Solution {
public:
struct TrieNode {
TrieNode *child[];
string str;
TrieNode() : str("") {
for (auto &a : child) a = NULL;
}
};
struct Trie {
TrieNode *root;
Trie() : root(new TrieNode()) {}
void insert(string s) {
TrieNode *p = root;
for (auto &a : s) {
int i = a - 'a';
if (!p->child[i]) p->child[i] = new TrieNode();
p = p->child[i];
}
p->str = s;
}
};
vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
vector<string> res;
if (words.empty() || board.empty() || board[].empty()) return res;
vector<vector<bool>> visit(board.size(), vector<bool>(board[].size(), false));
Trie T;
for (auto &a : words) T.insert(a);
for (int i = ; i < board.size(); ++i) {
for (int j = ; j < board[i].size(); ++j) {
if (T.root->child[board[i][j] - 'a']) {
search(board, T.root->child[board[i][j] - 'a'], i, j, visit, res);
}
}
}
return res;
}
void search(vector<vector<char>>& board, TrieNode* p, int i, int j, vector<vector<bool>>& visit, vector<string>& res) {
if (!p->str.empty()) {
res.push_back(p->str);
p->str.clear();
}
int d[][] = {{-, }, {, }, {, -}, {, }};
visit[i][j] = true;
for (auto &a : d) {
int nx = a[] + i, ny = a[] + j;
if (nx >= && nx < board.size() && ny >= && ny < board[].size() && !visit[nx][ny] && p->child[board[nx][ny] - 'a']) {
search(board, p->child[board[nx][ny] - 'a'], nx, ny, visit, res);
}
}
visit[i][j] = false;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/212

类似题目:

Word Search

Unique Paths III

参考资料:

https://leetcode.com/problems/word-search-ii/

https://leetcode.com/problems/word-search-ii/discuss/59780/Java-15ms-Easiest-Solution-(100.00)

https://leetcode.com/problems/word-search-ii/discuss/59784/My-simple-and-clean-Java-code-using-DFS-and-Trie

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Word Search II 词语搜索之二的更多相关文章

  1. [LeetCode] 212. Word Search II 词语搜索之二

    Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...

  2. [LeetCode] 212. Word Search II 词语搜索 II

    Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...

  3. [LeetCode] Word Pattern II 词语模式之二

    Given a pattern and a string str, find if str follows the same pattern. Here follow means a full mat ...

  4. [LeetCode] Word Ladder II 词语阶梯之二

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  5. [LeetCode] 126. Word Ladder II 词语阶梯之二

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  6. [LeetCode] Word Break II 拆分词句之二

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  7. LeetCode() Word Search II

    超时,用了tire也不行,需要再改. class Solution { class TrieNode { public: // Initialize your data structure here. ...

  8. Leetcode之回溯法专题-212. 单词搜索 II(Word Search II)

    Leetcode之回溯法专题-212. 单词搜索 II(Word Search II) 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单 ...

  9. [LeetCode] Word Search 词语搜索

    Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...

随机推荐

  1. 分页插件思想:pc加载更多功能和移动端下拉刷新加载数据

    感觉一个人玩lol也没意思了,玩会手机,看到这个下拉刷新功能就写了这个demo! 这个demo写的比较随意,咱不能当做插件使用,基本思想是没问题的,要用就自己封装吧! 直接上代码分析下吧! 布局: & ...

  2. Java程序猿 :2016 年终小结

    01 2016年即将进入尾声,不禁感叹,在学校的时候过日子是以天来算,而现在是以星期来算,甚至是月份. 这才发现,时间过得真快.这一年,遇到了很多人,很多事. 机缘巧合,年中去了趟帝都,爬了长城,游了 ...

  3. WriteLog

    public class WriteLog     {         /// <summary>         /// 创建日志文件         /// </summary& ...

  4. C#开发微信门户及应用(23)-微信小店商品管理接口的封装和测试

    在上篇<C#开发微信门户及应用(22)-微信小店的开发和使用>里面介绍了一些微信小店的基础知识,以及对应的对象模型,本篇继续微信小店的主题,介绍其中API接口的封装和测试使用.微信小店的相 ...

  5. 脚本化CSS类-HTML5 classList属性

    HTML元素可以有多个CSS类名,class属性保存了一个用空格隔开的类名列表.标识符class在JavaScript中是保留字,所以在JavaScript中可以用className. //如下代码设 ...

  6. ArcGIS Engine开发之图形查询

    图形查询是以用户通过鼠标操作生成的图形几何体为输入条件进行查询的查询,其查询结果为该几何体空间范围内的所有要素.常用的查询方式包括点选.线选.多边形选择.圆形选择和矩形选择等. 相关类与接口 图像查询 ...

  7. HTML5应用程序缓存Application Cache

    什么是Application Cache HTML5引入了应用程序缓存技术,意味着web应用可进行缓存,并在没有网络的情况下使用,通过创建cache manifest文件,可以轻松的创建离线应用. A ...

  8. iOS网络2——NSURLSession使用详解

    原文在此 一.整体介绍 NSURLSession在2013年随着iOS7的发布一起面世,苹果对它的定位是作为NSURLConnection的替代者,然后逐步将NSURLConnection退出历史舞台 ...

  9. [C#6] 1-using static

    0. 目录 C#6 新增特性目录 1. 老版本的代码 1 using System; 2 3 namespace csharp6 4 { 5 internal class Program 6 { 7 ...

  10. ORACLE 博客文章目录(2015-05-27更新)

    从接触ORACLE到深入学习,已有好几年了,虽然写的博客不多,质量也参差不齐,但是,它却是成长的历程的点点滴滴的一个见证,见证了我在这条路上的寻寻觅觅,朝圣的心路历程,现在将ORACLE方面的博客整理 ...