The Street Problem Code: STREETTA

https://www.codechef.com/problems/STREETTA

Submit

All submissions for this problem are available.

Read problems statements in Mandarin Chineseand Russian.

The String street is known as the busiest street in Codeland.
Tourists from all over the world want to visit the street once they are in Codeland.
The Chef owns N souvenir stores across the street (numbered from 1 to N).
At the beginning there is no souvenir in any store, the Chef has some plans to add some new items.
Each the Chef's plan is represented by 4 numbers: u v a b which mean an items with price b
is added to the store u, an items with price a + b is added to the store u + 1 and so on.
More formally, an item with price a * i + b is added to the store u + i for all (0 ≤ i ≤ v - u).

In additional to the cost of the item itself, the tourist must pay some conservation fees as well.
The Codeland regularly defines the new conservation fee. Each fee is represented by 4 numbers: u v a b which means
the tourist buying any item in the store u + i will be charged a fee of i * a + b for all (0 ≤ i ≤ v - u).
In the case that several conservation fees have effect on the same store, the customer needs to pay all of those fees.

At some point of time, a tourist at store i asks you what is the largest amount of money they have to spend for
a souvenir at that store (the amount of money includes the price of one of the souvenirs and all the conservation fees for that store).

Input

  • The first line of the input contains two integers N and M represent the number of stores and the number of events
  • Each of the next M lines represents an event of three types below in the chronological order.
    • The new plan of the Chef: "1 u v a b".
    • The new conservation fee: "2 u v a b".
    • The query from tourist: "3 i".

Output

For each query from tourist, print in one line the corresponding answer.
If there is no item at the ith store, print out "NA" (without quotes) as the answer.

Constraints

  • 1 ≤ N ≤ 109
  • 1 ≤ M ≤ 3*105
  • For events of type 1: 1 ≤ u ≤ v ≤ N. |a|, |b| ≤ 109
  • For events of type 2: 1 ≤ u ≤ v ≤ N. |a|, |b| ≤ 104
  • For events of type 3: 1 ≤ i ≤ N

Example

Input:
10 10
3 5
1 3 8 3 1
3 5
1 5 10 -8 2
3 5
3 10
2 1 10 0 1
3 6
2 5 7 2 1
3 6 Output:
NA
7
7
-38
11
14 题意:
操作1:a数组的[l,r]对一个等差数列取大
操作2:给b数组的[l,r]加一个等差数列
操作3:询问 ai+bi 数据范围:10^9,所以线段树动态开点
等差数列最大值/和:一次函数
对于操作2,线段树维护a的和,b的和,当加入ax+b时,直接加上就好
对于操作1,分3种情况:
1、区间本没有等差数列,直接加上
2、区间原有的等差数列与现在的等差数列在区间内无交点,用大的直接覆盖
3、区间原有的等差数列与现在的等差数列在区间内有交点,,那么一定有一个等差数列只能对当前区间的一半区间有影响,
下传这个对一半区间有影响的等差数列,本区间保留另一个等差数列
#include<cstdio>
#include<algorithm>
#define INF (1LL<<62)
#define N 300001
using namespace std;
struct node
{
long long a,b,end;
bool have1,cross1;
bool have2,cross2;
long long maxna,maxnb;
}tr[N*];;
int n,m,lc[N*],rc[N*],tot,cnt;
int op,opl,opr,root;
long long ans1,ans2,A,B;
void flag(int k,int who,int l,int r);
long long read()
{
long long x=,f=; char c=getchar();
while(c<''||c>'') { if(c=='-') f=-; c=getchar(); }
while(c>=''&&c<='') { x=x*+c-'' ; c=getchar(); }
return x*f;
}
struct TREE
{
void add(int &k,int l,int r,long long a,long long b)
{
if(!k)
{
k=++tot;
tr[k].maxnb=-INF;
}
tr[k].cross1=true;
if(l>=opl&&r<=opr)
{
tr[k].b+=b; tr[k].a+=a;
tr[k].have1=true;
return;
}
int mid=l+r>>;
if(opl<=mid) add(lc[k],l,mid,a,b);
if(opr>mid) add(rc[k],mid+,r,a,A*(mid+-opl+-)+B);
}
double meet(long long a1,long long b1,long long a2,long long b2)
{
if(a1!=a2) return 1.0*(b2-b1)/(a1-a2);
return ;
}
void down(int &k,long long aa,long long bb,int l,int r)
{
flag(lc[k],aa,bb,l,l+r>>);
flag(rc[k],aa,aa*((l+r>>)+-l)+bb,(l+r>>)+,r);
}
void flag(int &k,long long aa,long long bb,int l,int r)
{
if(!k)
{
k=++tot;
tr[k].maxnb=-INF;
}
tr[k].cross2=true;
tr[k].have2=true;
if(l==r)
{
tr[k].maxnb=max(tr[k].maxnb,bb);
return;
}
if(!tr[k].maxna&&!tr[k].maxnb) { tr[k].maxna=aa; tr[k].maxnb=bb; return; }
long long prea=tr[k].maxna,preb=tr[k].maxnb;
long long preend=prea*(r-l+-)+preb;
long long nowend=aa*(r-l+-)+bb;
if(preb>=bb&&preend>=nowend) return;
if(preb<=bb&&preend<=nowend) { tr[k].maxna=aa; tr[k].maxnb=bb; return; }
double point=meet(tr[k].maxna,tr[k].maxnb,aa,bb);
point+=l;
if(point<1.0*(l+r>>))
{
if(preb>bb)
{
down(k,prea,preb,l,r);
tr[k].maxna=aa; tr[k].maxnb=bb;
}
else down(k,aa,bb,l,r);
}
else
{
if(preend>nowend)
{
down(k,prea,preb,l,r);
tr[k].maxna=aa; tr[k].maxnb=bb;
}
else down(k,aa,bb,l,r);
}
}
void maxn(int &k,long long aa,long long bb,int l,int r)
{
if(!k)
{
k=++tot;
tr[k].maxnb=-INF;
}
tr[k].cross2=true;
if(l>=opl&&r<=opr)
{
flag(k,aa,bb,l,r);
return;
}
if(tr[k].have2) down(k,tr[k].maxna,tr[k].maxnb,l,r);
int mid=l+r>>;
if(opl<=mid) maxn(lc[k],aa,bb,l,mid);
if(opr>mid) maxn(rc[k],aa,(mid+-opl+-)*A+B,mid+,r);
}
void query1(int k,int l,int r)
{
if(tr[k].have1) ans1+=tr[k].a*(opl-l+-)+tr[k].b;
if(!tr[lc[k]].cross1&&!tr[rc[k]].cross1) return;
int mid=l+r>>;
if(opl<=mid&&tr[lc[k]].cross1) query1(lc[k],l,mid);
else if(opl>mid&&tr[rc[k]].cross1) query1(rc[k],mid+,r);
}
void query2(int k,int l,int r)
{
if(tr[k].have2) ans2=max(ans2,tr[k].maxna*(opl-l+-)+tr[k].maxnb);
if(!tr[lc[k]].cross2&&!tr[rc[k]].cross2) return;
if(tr[k].have2) down(k,tr[k].maxna,tr[k].maxnb,l,r);
int mid=l+r>>;
if(opl<=mid&&tr[lc[k]].cross2) query2(lc[k],l,mid);
else if(opl>mid&&tr[rc[k]].cross2) query2(rc[k],mid+,r);
}
}Tree;
int main()
{
n=read(); m=read();
while(m--)
{
op=read();
if(op==)
{
opl=read(); opr=read(); A=read(); B=read();
Tree.maxn(root,A,B,,n);
}
else if(op==)
{
opl=read(); opr=read(); A=read(); B=read();
Tree.add(root,,n,A,B);
}
else
{
scanf("%d",&opl);
ans2=-INF; Tree.query2(root,,n);
if(ans2==-INF) { puts("NA"); continue; }
ans1=; Tree.query1(root,,n);
printf("%lld\n",ans1+ans2);
}
}
}

三大错误:

1、当前函数下传时,右区间首项为(mid+1-1)*a+b

mid+1时右区间第一个,再-1因为等差数列首项为 a*0+b

2、初始化:结构体内maxnb初始值为0,应该是无穷小,因为a,b可能为负数

无穷小:-2e15 会WA,直接 1LL<<62

3、down函数里下传k的等差数列后,k不能清0,因为k可能还有一个等差数列

Codechef March Challenge 2014——The Street的更多相关文章

  1. AC日记——The Street codechef March challenge 2014

    The Street 思路: 动态开节点线段树: 等差序列求和于取大,是两个独立的子问题: 所以,建两颗线段树分开维护: 求和:等差数列的首项和公差直接相加即可: 取大: 对于线段树每个节点储存一条斜 ...

  2. codechef January Challenge 2014 Sereja and Graph

    题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...

  3. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  4. CodeChef November Challenge 2014

    重点回忆下我觉得比较有意义的题目吧.水题就只贴代码了. Distinct Characters Subsequence 水. 代码: #include <cstdio> #include ...

  5. 刷漆(Codechef October Challenge 2014:Remy paints the fence)

    [问题描述] Czy做完了所有的回答出了所有的询问,结果是,他因为脑力消耗过大而变得更虚了:).帮助Czy恢复身材的艰巨任务落到了你的肩上. 正巧,你的花园里有一个由N块排成一条直线的木板组成的栅栏, ...

  6. [Codechef October Challenge 2014]刷漆

    问题描述 Czy做完了所有的回答出了所有的询问,结果是,他因为脑力消耗过大而变得更虚了:).帮助Czy恢复身材的艰巨任务落到了你的肩上. 正巧,你的花园里有一个由N块排成一条直线的木板组成的栅栏,木板 ...

  7. Codechef December Challenge 2014 Chef and Apple Trees 水题

    Chef and Apple Trees Chef loves to prepare delicious dishes. This time, Chef has decided to prepare ...

  8. CodeChef March Challenge 2019题解

    传送门 \(CHNUM\) 显然正数一组,负数一组 for(int T=read();T;--T){ n=read(),c=d=0; fp(i,1,n)x=read(),x>0?++c:++d; ...

  9. CODECHEF Oct. Challenge 2014 Children Trips

    @(XSY)[分塊, 倍增] Description There's a new trend among Bytelandian schools. The "Byteland Tourist ...

随机推荐

  1. 【BZOJ2555】SubString(后缀自动机,Link-Cut Tree)

    [BZOJ2555]SubString(后缀自动机,Link-Cut Tree) 题面 BZOJ 题解 这题看起来不难 每次要求的就是\(right/endpos\)集合的大小 所以搞一个\(LCT\ ...

  2. [HNOI2013]游走

    题面在这里 题意 从1号点开始等概率选择路径并加上边权,直到到达n号点结束,要求将m条边赋权值1-m使得期望最小 sol 续上文 zsy ycb orz 简单的贪心:求出每条边的期望经过次数,sort ...

  3. [BZOJ1003] [ZJOI2006] 物流运输trans (最短路 & dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  4. NancyFX 第六章 视图引擎

    正如其他的Web工具包,Nancy也有视图的概念,用来描述在浏览器上看到的输出 视图的定义 你可能没有之前没有接触过"视图"的概念,或是仅仅是从其他工具包例如ASP.NET MVC ...

  5. Linux IPMI 配置管理.md

    DELL 服务器 user id 范围:1-16 可以修改用户名和密码 不允许用户名重复 当设置一个已存在的用户名时,无论user id在前或在后,修改密码会将该项用户名设置为空,enable会恢复成 ...

  6. Java Swing应用程序 JComboBox下拉框联动查询

    在web项目中,通过下拉框.JQuery和ajax可以实现下拉框联动查询. 譬如说,当你查询某个地方时,页面上有:省份:<下拉框省份> 市区:<下拉框市区> 县乡:<下拉 ...

  7. wifislax中的linset软件钓鱼教程

    wifislax中很多破解wifi密码的工具,下面就来说说里面的linset软件的钓鱼过程,国内很多人知道这个方法,不过没有总结,youtube上视频一大把,我刚才测试了一把,还是打算记录一下攻击过程 ...

  8. python 对象和json互相转换

    一.python对json的支持 从python2.6开始,python标准库中添加了对json的支持,操作json时,只需要import json即可. 二.python对象转换成json字符串 在 ...

  9. 共享MFC自绘Listctrl代码

    在别人代码基础上修改的ListCtrl,支持设置行高,header高度,header背景图,奇偶行不同背景色, 支持设置某列为Checkbox,Edit,Combobox, 支持自定义排序. 效果图如 ...

  10. Java设计模式(五)Prototype原型模式

    一.场景描述 创建型模式中,从工厂方法模式,抽象工厂模式,到建造者模式,再到原型模式,我的理解是,创建对象的方式逐步从编码实现转向内存对象处理. 例如,在“仪器数据采集器”的子类/对象“PDF文件数据 ...