[LeetCode] Burst Balloons 打气球游戏
Given n
balloons, indexed from 0
to n-1
. Each balloon is painted with a number on it represented by array nums
. You are asked to burst all the balloons. If the you burst balloon i
you will get nums[left] * nums[i] * nums[right]
coins. Here left
and right
are adjacent indices of i
. After the burst, the left
and right
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
- You may imagine
nums[-1] = nums[n] = 1
. They are not real therefore you can not burst them. - 0 ≤
n
≤ 500, 0 ≤nums[i]
≤ 100
Example:
Input:[3,1,5,8]
Output:167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
Explanation:
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Credits:
Special thanks to @peisi for adding this problem and creating all test cases.
这道题提出了一种打气球的游戏,每个气球都对应着一个数字,每次打爆一个气球,得到的金币数是被打爆的气球的数字和其两边的气球上的数字相乘,如果旁边没有气球了,则按1算,以此类推,求能得到的最多金币数。参见题目中给的例子,题意并不难理解。那么大家拿到题后,总是会习惯的先去想一下暴力破解法吧,这道题的暴力搜索将相当的复杂,因为每打爆一个气球,断开的地方又重新挨上,所有剩下的气球又要重新遍历,这使得分治法不能 work,整个的时间复杂度会相当的高,不要指望可以通过 OJ。而对于像这种求极值问题,一般都要考虑用动态规划 Dynamic Programming 来做,维护一个二维动态数组 dp,其中 dp[i][j] 表示打爆区间 [i,j] 中的所有气球能得到的最多金币。题目中说明了边界情况,当气球周围没有气球的时候,旁边的数字按1算,这样可以在原数组两边各填充一个1,方便于计算。这道题的最难点就是找状态转移方程,还是从定义式来看,假如区间只有一个数,比如 dp[i][i],那么计算起来就很简单,直接乘以周围两个数字即可更新。如果区间里有两个数字,就要算两次了,先打破第一个再打破了第二个,或者先打破第二个再打破第一个,比较两种情况,其中较大值就是该区间的 dp 值。假如区间有三个数呢,比如 dp[1][3],怎么更新呢?如果先打破第一个,剩下两个怎么办呢,难道还要分别再遍历算一下吗?这样跟暴力搜索的方法有啥区别呢,还要 dp 数组有啥意思。所谓的状态转移,就是假设已知了其他状态,来推导现在的状态,现在是想知道 dp[1][3] 的值,那么如果先打破了气球1,剩下了气球2和3,若之前已经计算了 dp[2][3] 的话,就可以使用其来更新 dp[1][3] 了,就是打破气球1的得分加上 dp[2][3]。那假如先打破气球2呢,只要之前计算了 dp[1][1] 和 dp[3][3],那么三者加起来就可以更新 dp[1][3]。同理,先打破气球3,就用其得分加上 dp[1][2] 来更新 dp[1][3]。说到这里,是不是感觉豁然开朗了 ^.^
那么对于有很多数的区间 [i, j],如何来更新呢?现在是想知道 dp[i][j] 的值,这个区间可能比较大,但是如果知道了所有的小区间的 dp 值,然后聚沙成塔,逐步的就能推出大区间的 dp 值了。还是要遍历这个区间内的每个气球,就用k来遍历吧,k在区间 [i, j] 中,假如第k个气球最后被打爆,那么此时区间 [i, j] 被分成了三部分,[i, k-1],[k],和 [k+1, j],只要之前更新过了 [i, k-1] 和 [k+1, j] 这两个子区间的 dp 值,可以直接用 dp[i][k-1] 和 dp[k+1][j],那么最后被打爆的第k个气球的得分该怎么算呢,你可能会下意识的说,就乘以周围两个气球被 nums[k-1] * nums[k] * nums[k+1],但其实这样是错误的,为啥呢?dp[i][k-1] 的意义是什么呢,是打爆区间 [i, k-1] 内所有的气球后的最大得分,此时第 k-1 个气球已经不能用了,同理,第 k+1 个气球也不能用了,相当于区间 [i, j] 中除了第k个气球,其他的已经爆了,那么周围的气球只能是第 i-1 个,和第 j+1 个了,所以得分应为 nums[i-1] * nums[k] * nums[j+1],分析到这里,状态转移方程应该已经跃然纸上了吧,如下所示:
dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]) ( i ≤ k ≤ j )
有了状态转移方程了,就可以写代码,下面就遇到本题的第二大难点了,区间的遍历顺序。一般来说,遍历所有子区间的顺序都是i从0到n,然后j从i到n,然后得到的 [i, j] 就是子区间。但是这道题用这种遍历顺序就不对,在前面的分析中已经说了,这里需要先更新完所有的小区间,然后才能去更新大区间,而用这种一般的遍历子区间的顺序,会在更新完所有小区间之前就更新了大区间,从而不一定能算出正确的dp值,比如拿题目中的那个例子 [3, 1, 5, 8] 来说,一般的遍历顺序是:
[3] -> [3, 1] -> [3, 1, 5] -> [3, 1, 5, 8] -> [1] -> [1, 5] -> [1, 5, 8] -> [5] -> [5, 8] -> [8]
显然不是我们需要的遍历顺序,正确的顺序应该是先遍历完所有长度为1的区间,再是长度为2的区间,再依次累加长度,直到最后才遍历整个区间:
[3] -> [1] -> [5] -> [8] -> [3, 1] -> [1, 5] -> [5, 8] -> [3, 1, 5] -> [1, 5, 8] -> [3, 1, 5, 8]
这里其实只是更新了 dp 数组的右上三角区域,最终要返回的值存在 dp[1][n] 中,其中n是两端添加1之前数组 nums 的个数。参见代码如下:
解法一:
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
nums.insert(nums.begin(), );
nums.push_back();
vector<vector<int>> dp(n + , vector<int>(n + , ));
for (int len = ; len <= n; ++len) {
for (int i = ; i <= n - len + ; ++i) {
int j = i + len - ;
for (int k = i; k <= j; ++k) {
dp[i][j] = max(dp[i][j], nums[i - ] * nums[k] * nums[j + ] + dp[i][k - ] + dp[k + ][j]);
}
}
}
return dp[][n];
}
};
对于题目中的例子[3, 1, 5, 8]
,得到的dp数组如下:
这题还有递归解法,思路都一样,就是写法略有不同,参见代码如下:
解法二:
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
nums.insert(nums.begin(), );
nums.push_back();
vector<vector<int>> dp(n + , vector<int>(n + , ));
return burst(nums, dp, , n);
}
int burst(vector<int>& nums, vector<vector<int>>& dp, int i, int j) {
if (i > j) return ;
if (dp[i][j] > ) return dp[i][j];
int res = ;
for (int k = i; k <= j; ++k) {
res = max(res, nums[i - ] * nums[k] * nums[j + ] + burst(nums, dp, i, k - ) + burst(nums, dp, k + , j));
}
dp[i][j] = res;
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/312
类似题目:
参考资料:
https://leetcode.com/problems/burst-balloons/
https://leetcode.com/problems/burst-balloons/discuss/76228/Share-some-analysis-and-explanations
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Burst Balloons 打气球游戏的更多相关文章
- [LeetCode] 312. Burst Balloons 打气球游戏
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...
- [LeetCode] Burst Balloons (Medium)
Burst Balloons (Medium) 这题没有做出来. 自己的思路停留在暴力的解法, 时间复杂度很高: 初始化maxCount = 0. 对于当前长度为k的数组nums, 从0到k - 1逐 ...
- [LeetCode] 312. Burst Balloons 爆气球
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...
- LeetCode Burst Balloons
原题链接在这里:https://leetcode.com/problems/burst-balloons/ 题目: Given n balloons, indexed from 0 to n-1. E ...
- 452. Minimum Number of Arrows to Burst Balloons扎气球的个数最少
[抄题]: There are a number of spherical balloons spread in two-dimensional space. For each balloon, pr ...
- 312 Burst Balloons 戳气球
现有 n 个气球按顺序排成一排,每个气球上标有一个数字,这些数字用数组 nums 表示.现在要求你戳破所有的气球.每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * ...
- LeetCode 312. Burst Balloons(戳气球)
参考:LeetCode 312. Burst Balloons(戳气球) java代码如下 class Solution { //参考:https://blog.csdn.net/jmspan/art ...
- 【LeetCode】312. Burst Balloons 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/burst-ba ...
- 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)
[LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...
随机推荐
- Oracle从文件系统迁移到ASM存储
环境:RHEL 6.4 + Oracle 11.2.0.4 需求:数据库存储由文件系统迁移到ASM 数据库存储迁移到ASM磁盘组 1.1 编辑参数文件指定新的控制文件路径 1.2 启动数据库到nomo ...
- C#:解决WCF中服务引用 自动生成代码不全的问题。
问题描述: 如下图:打叉的部分是引用不成功的部分 ,在web.config文件中没有自动添加其引用代码. 英文解释 在服务引用选择自己的项目的程序集就行了,如下图: 特别注意:这些程序集一定要在自己的 ...
- 用CIL写程序:定义一个叫“慕容小匹夫”的类
前文回顾: <用CIL写程序:你好,沃尔德> <用CIL写程序:写个函数做加法> 前言: 今天是乙未羊年的第一天,小匹夫先在这里给各位看官拜个年了.不知道各位看官是否和匹夫一样 ...
- 黄聪:如何给wordpress的编辑器添加一个自定义按钮,并且实现插入功能
1.添加按钮 在 functions.php 文件里面添加下面代码: add_action('media_buttons', 'add_my_media_button'); function ad ...
- java设计模式之简单工厂模式
简单工厂: 简单工厂的优点: 1.去除客户端与具体产品的耦合,在客户端与具体的产品中增加一个工厂类,增加客户端与工厂类的耦合 2.封装工厂类,实现代码平台的复用性,创建对象的过程被封装成工厂类,可以多 ...
- C++ tinyXML使用
tinyXML下载: http://sourceforge.net/projects/tinyxml/ 加载到项目: 这六个文件添加到你的c++工程中,分别是tinystr.h.tinystr.cpp ...
- asp.net记录错误日志的方法
1.说明 在调试发布后的asp.net项目时有可能会遇到意想不到的错误,而未能及时的显示.这就需要记录日志来跟踪错误信息,所以写了个简单的记录信息的方法,记录简单的文本信息也可以使用.此方法是以生成文 ...
- 如何实现一个php框架系列文章【开篇】
1.本系列文章的目的 实现一个小而美的产品级别php框架 自己动手实现一个新框架仅用于学习交流,不打算替代市面上现有的其他主流框架. 2. 我要一个怎样的PHP框架 简单实用,安全优雅,博采众长 安装 ...
- no identity found Command /usr/bin/codesign failed with exit code 1 报错解决方法
stackoverflow 的解决方法是 xcode->preference->account->view detail -> refresh the provisioning ...
- UITabBarController 基本定制
UITabBarController 定制 特点 用法 1.准备好你的tabBar图片及其他图片(哈哈哈!!!!),我的图片都放在了Assets.xcassets中. 2.导入本工程中的Categro ...