十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下
[Codeforces原文链接](http://codeforces.com/blog/entry/44351#comment-332425)

dsu on tree

简介

我也不清楚dsu是什么的英文缩写...

好吧是Disjoint Set Union 并查集2333

就像是树上的启发式合并

用到了\(heavy-light\ decomposition\)树链剖分

把轻边子树的信息合并到重链上的点里

因为每次都是先dfs轻儿子再dfs重儿子,只有重儿子子树的贡献保留,所以可以保证dfs到每颗子树时当前全局维护的信息不会有别的子树里的,和莫队很像


算法过程

find the BigChild of each vertex
dfs(u, fa, keep)
dfs(LightChild, u, 0)
dfs(BigChild, u, 1), big[BigChild] = 1
update(u, fa, 1) //calculate the contribution of u's LightChild's SubTree
update the ans of u
big[BigChild] = 0
if keep == 0
update(u, fa, -1) //remove the contributino of u's SubTree update(u, fa, val)
calculate u's information
update(v : (u, v) and !big[v], u, val)

先递归计算轻儿子子树,递归结束时消除他们的贡献

再递归计算重儿子子树,保留他的贡献

再计算当前子树中所有轻子树的贡献

更新答案

如果当前子树是父节点的轻子树,消除当前子树的贡献


复杂度分析

显然只有遇到轻边才会把自己的信息合并到父节点

树链剖分后每个点到根的路径上有\(logn\)条轻边和\(lgon\)条重链

一个点的信息只会向上合并\(logn\)次

如果一个点的信息修改是\(O(1)\)的,那么总复杂度就是\(O(nlogn)\)

从这里我们可以发现和对dfs序使用莫队有异曲同工之妙,莫队也要求修改的复杂度很低


应用

  1. 优秀的dfs序莫队替代品,复杂度\(\sqrt{n} \rightarrow logn\)
  2. 结合点分治的思想可以做一些有根树上的路径统计问题

模板题

CF600E. Lomsat gelral

题意:询问每颗子树中出现次数最多的颜色们编号和

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define pii pair<int, ll>
#define MP make_pair
#define fir first
#define sec second
const int N=1e5+5;
int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, a[N];
struct edge{int v, ne;}e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
e[++cnt]=(edge){u, h[v]}; h[v]=cnt;
}
int size[N], mx[N], big[N];
void dfs(int u, int fa) {
size[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa) {
dfs(e[i].v, u);
size[u] += size[e[i].v];
if(size[e[i].v] > size[mx[u]]) mx[u] = e[i].v;
}
} int cou[N], Max; ll ans[N];
pii f[N];
void update(int u, int fa, int val) {
int &c = cou[a[u]];
f[c].fir --; f[c].sec -= a[u];
c += val;
f[c].fir ++; f[c].sec += a[u];
if(val==1) Max = max(Max, c);
else if(!f[Max].fir) Max--; for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa && !big[e[i].v]) update(e[i].v, u, val);
} void dfs(int u, int fa, int keep) {
for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa && e[i].v != mx[u]) dfs(e[i].v, u, 0);
if(mx[u]) dfs(mx[u], u, 1), big[mx[u]] = 1;
update(u, fa, 1);
ans[u] = f[Max].sec;
big[mx[u]] = 0;
if(!keep) update(u, fa, -1);
}
int main() {
//freopen("in","r",stdin);
n=read();
for(int i=1; i<=n; i++) a[i]=read();
for(int i=1; i<n; i++) ins(read(), read());
dfs(1, 0);
dfs(1, 0, 1);
for(int i=1; i<=n; i++) printf("%I64d ",ans[i]);
}

[dsu on tree]【学习笔记】的更多相关文章

  1. dsu on tree学习笔记

    前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...

  2. dsu on tree 学习笔记

    这是一个黑科技,考虑树链剖分后,每个点只会在轻重链之间转化\(log\)次. 考虑暴力是怎么写的,每次枚举一个点,再暴力把子树全部扫一边. \(dsu\ on\ tree.\)的思想就是保留重儿子不清 ...

  3. 珂朵莉树(Chtholly Tree)学习笔记

    珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...

  4. Codeforces 600E. Lomsat gelral(Dsu on tree学习)

    题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...

  5. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

  6. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  7. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  8. splay tree 学习笔记

    首先感谢litble的精彩讲解,原文博客: litble的小天地 在学完二叉平衡树后,发现这是只是一个不稳定的垃圾玩意,真正实用的应有Treap.AVL.Splay这样的查找树.于是最近刚学了学了点S ...

  9. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

  10. LSM Tree 学习笔记——MemTable通常用 SkipList 来实现

    最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近 ...

随机推荐

  1. 初识LINUX之常见命令

    玩过Linux的人都会知道,Linux中的命令的确是非常多,但是玩过Linux的人也从来不会因为Linux的命令如此之多而烦恼,因为我们只需要掌握我们最常用的命令就可以了.当然你也可以在使用时去找一下 ...

  2. 自制ZigBee协议分析仪

    关键词  ZigBee  Sniffer 协议  分析仪  自制  CC2530  CC2531 在开发ZigBee / Bluetooth的过程,难免会要用到Sniffer工具,Packet Sni ...

  3. windows下更改mysql数据储存物理目录

    windows10 1.停止mysql服务 以管理员身份运行cmd 输入命令 net stop mysql57 (我的mysql版本是5.7的,具体名称以你当前版本为主) 也可以打开任务管理器找到上面 ...

  4. HTML5 Canvas圆盘抽奖应用(适用于Vue项目)

    <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="UTF-8& ...

  5. Java数据结构和算法(十三)——哈希表

    Hash表也称散列表,也有直接译作哈希表,Hash表是一种根据关键字值(key - value)而直接进行访问的数据结构.它基于数组,通过把关键字映射到数组的某个下标来加快查找速度,但是又和数组.链表 ...

  6. 邓_PPT

    如何拯救一份丑到爆的PPT? "小邓,这是我做的PPT,你优化优化,明天早上给我,上午客户来要用." 领导,你这是PPT嘛,明明就是word嘛. "小张啊,你看看我这个P ...

  7. WaitForXXX等待无效句柄

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  8. angular 选中切换面板

    此方法采用的是没有路由的方式: html5 代码: <div [hidden]="flag"> <li class="music-list-datail ...

  9. Mezzanine (Windows10下)安装配置与修改(更新中)

    最近自己搭个系统,发现Mezzanine很快,先搞个python 2.7, pip. 然后两个方法: 1. $ pip install mezzanine 2. Git下载,解压 后进入目录,创建项目 ...

  10. Spring学习之路一

    Spring 官网:http://projects.spring.io/spring-framework/ Spring下载地址:https://repo.spring.io/simple/libs- ...