十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下
[Codeforces原文链接](http://codeforces.com/blog/entry/44351#comment-332425)

dsu on tree

简介

我也不清楚dsu是什么的英文缩写...

好吧是Disjoint Set Union 并查集2333

就像是树上的启发式合并

用到了\(heavy-light\ decomposition\)树链剖分

把轻边子树的信息合并到重链上的点里

因为每次都是先dfs轻儿子再dfs重儿子,只有重儿子子树的贡献保留,所以可以保证dfs到每颗子树时当前全局维护的信息不会有别的子树里的,和莫队很像


算法过程

find the BigChild of each vertex
dfs(u, fa, keep)
dfs(LightChild, u, 0)
dfs(BigChild, u, 1), big[BigChild] = 1
update(u, fa, 1) //calculate the contribution of u's LightChild's SubTree
update the ans of u
big[BigChild] = 0
if keep == 0
update(u, fa, -1) //remove the contributino of u's SubTree update(u, fa, val)
calculate u's information
update(v : (u, v) and !big[v], u, val)

先递归计算轻儿子子树,递归结束时消除他们的贡献

再递归计算重儿子子树,保留他的贡献

再计算当前子树中所有轻子树的贡献

更新答案

如果当前子树是父节点的轻子树,消除当前子树的贡献


复杂度分析

显然只有遇到轻边才会把自己的信息合并到父节点

树链剖分后每个点到根的路径上有\(logn\)条轻边和\(lgon\)条重链

一个点的信息只会向上合并\(logn\)次

如果一个点的信息修改是\(O(1)\)的,那么总复杂度就是\(O(nlogn)\)

从这里我们可以发现和对dfs序使用莫队有异曲同工之妙,莫队也要求修改的复杂度很低


应用

  1. 优秀的dfs序莫队替代品,复杂度\(\sqrt{n} \rightarrow logn\)
  2. 结合点分治的思想可以做一些有根树上的路径统计问题

模板题

CF600E. Lomsat gelral

题意:询问每颗子树中出现次数最多的颜色们编号和

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define pii pair<int, ll>
#define MP make_pair
#define fir first
#define sec second
const int N=1e5+5;
int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, a[N];
struct edge{int v, ne;}e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
e[++cnt]=(edge){u, h[v]}; h[v]=cnt;
}
int size[N], mx[N], big[N];
void dfs(int u, int fa) {
size[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa) {
dfs(e[i].v, u);
size[u] += size[e[i].v];
if(size[e[i].v] > size[mx[u]]) mx[u] = e[i].v;
}
} int cou[N], Max; ll ans[N];
pii f[N];
void update(int u, int fa, int val) {
int &c = cou[a[u]];
f[c].fir --; f[c].sec -= a[u];
c += val;
f[c].fir ++; f[c].sec += a[u];
if(val==1) Max = max(Max, c);
else if(!f[Max].fir) Max--; for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa && !big[e[i].v]) update(e[i].v, u, val);
} void dfs(int u, int fa, int keep) {
for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa && e[i].v != mx[u]) dfs(e[i].v, u, 0);
if(mx[u]) dfs(mx[u], u, 1), big[mx[u]] = 1;
update(u, fa, 1);
ans[u] = f[Max].sec;
big[mx[u]] = 0;
if(!keep) update(u, fa, -1);
}
int main() {
//freopen("in","r",stdin);
n=read();
for(int i=1; i<=n; i++) a[i]=read();
for(int i=1; i<n; i++) ins(read(), read());
dfs(1, 0);
dfs(1, 0, 1);
for(int i=1; i<=n; i++) printf("%I64d ",ans[i]);
}

[dsu on tree]【学习笔记】的更多相关文章

  1. dsu on tree学习笔记

    前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...

  2. dsu on tree 学习笔记

    这是一个黑科技,考虑树链剖分后,每个点只会在轻重链之间转化\(log\)次. 考虑暴力是怎么写的,每次枚举一个点,再暴力把子树全部扫一边. \(dsu\ on\ tree.\)的思想就是保留重儿子不清 ...

  3. 珂朵莉树(Chtholly Tree)学习笔记

    珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...

  4. Codeforces 600E. Lomsat gelral(Dsu on tree学习)

    题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...

  5. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

  6. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  7. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  8. splay tree 学习笔记

    首先感谢litble的精彩讲解,原文博客: litble的小天地 在学完二叉平衡树后,发现这是只是一个不稳定的垃圾玩意,真正实用的应有Treap.AVL.Splay这样的查找树.于是最近刚学了学了点S ...

  9. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

  10. LSM Tree 学习笔记——MemTable通常用 SkipList 来实现

    最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近 ...

随机推荐

  1. 防止ajax重复提交

    在jquery中防止ajax重复提交

  2. [国嵌攻略][142][LCD驱动程序架构]

    LCD裸机驱动回顾 1.LCD初始化 1.1.控制器初始化 1.2.端口初始化 1.3.指明了帧缓冲 2.LCD图形显示 2.1.将图形数据写入帧缓冲 Linux帧缓冲体验 把图片转换成开发板屏对应的 ...

  3. 【端-iOS】给iOS开发入门者编码的一点建议

    规范编码可以提高代码的可读性,降低维护成本.作为一个程序员,要对自己写的代码负责,虽然bug无可避免,但是写代码时最基本的编码规则还是应该遵守的,否则不是坑自己就是坑别人,因为代码肯定是要维护的. 下 ...

  4. Tree Recovery(由先、中序列构建二叉树)

    题目来源: http://poj.org/problem?id=2255 题目描述: Description Little Valentine liked playing with binary tr ...

  5. Jfinal——实践出真知

    什么是Jfinal? JFinal 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所 ...

  6. Bootstrap中data-src无法显示图片,但是src可以

    在学习bootstrap时,书中的源码是用的data-src来定义图像位置,但是我在使用的时候无法显示图片:data-src可以在img标签中使用来显示图片吗?我使用src可以,而是用data-src ...

  7. 织梦dedecmsV5.7联动类型无法显示的处理方法

    最近织梦dedecms在新的功能中添加了一个联动类型这样的一个功能.所谓的联动类型,类似于一级目录下有二级目录,二级目录下又有三级目录,可以理解为数据结构中树形结构.级和级之间都是有着联系的.为了让大 ...

  8. UML图学习之三 状态图

    状态图(Statechart Diagram)主要用于描述一个对象在其生存期间的动态行为,表现为一个对象所经历的状态序列,引起状态转移的事件(Event),以及因状态转移而伴随的动作(Action). ...

  9. python 之pulp 线性规划介绍及举例

    pulp http://pythonhosted.org/PuLP/main/basic_python_coding.html 供水问题 1问题 供水公司有三个水库分别为A,B,C向四个小区甲乙丙丁供 ...

  10. python_鸡兔同笼问题

    鸡兔同笼问题 -- 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? --鸡和兔在一个笼子里,从上面数,有35个头:从下面数,有94只脚.问笼中各有几只鸡和兔 如何逻辑整理? -- 鸡头和兔子 ...