洛谷 [p1439] 最长公共子序列 (NlogN)
可以发现只有当两个序列中都没有重复元素时(1~n的排列)此种优化才是高效的,不然可能很不稳定。
求a[] 与b[]中的LCS
通过记录lis[i]表示a[i]在b[]中的位置,将LCS问题转化为最长上升子序列问题,转化方法如下:
for(int i=1;i<=n;i++){
local[b[i]]=i;
}
for(int i=1;i<=n;i++){
lis[i]=local[a[i]];
}
当序列中有元素重复时,我们们需要保证对于每个a[i]所记录的位置必须是逆序的,以保证一个元素只取一次。
例:举例说明:
A:abdba
B:dbaaba
则1:先顺序扫描A串,取其在B串的所有位置:
2:a(2,3,5) b(1,4) d(0)。
3:用每个字母的反序列替换,则最终的最长严格递增子序列的长度即为解。
替换结果:532 41 0 41 532
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int read(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return fh*rv;
}
int n,a[100005],b[100005],local[100005],lis[100005],dp[100005];
int main(){
freopen("in.txt","r",stdin);
n=read();
for(int i=1;i<=n;i++){
a[i]=read();
}
for(int i=1;i<=n;i++){
b[i]=read();
}
for(int i=1;i<=n;i++){
local[b[i]]=i;
}
for(int i=1;i<=n;i++){
lis[i]=local[a[i]];
}
dp[1]=lis[1];dp[0]++;
for(int i=2;i<=n;i++){
int l=1,r=dp[0],m=0;
while(l<=r){
m=(l+r)>>1;
if(dp[m]<=lis[i]){
l=m+1;
}else r=m-1;
}
if(l==1){
dp[l]=min(dp[l],lis[i]);
}else {
if(l==dp[0]+1){
dp[0]++;
dp[l]=lis[i];
}else {
dp[l]=min(dp[l],lis[i]);
}
}
}
cout<<dp[0];
fclose(stdin);
return 0;
}
洛谷 [p1439] 最长公共子序列 (NlogN)的更多相关文章
- 洛谷P1439 最长公共子序列(LCS问题)
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...
- 洛谷P3402 最长公共子序列
题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作 ...
- 【算法】最长公共子序列(nlogn)
转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...
- 最长公共子序列 nlogn
先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...
- 洛谷P2766 最长递增子序列问题
https://www.luogu.org/problemnew/show/P2766 注:题目描述有误,本题求的是最长不下降子序列 方案无限多时输出 n 网络流求方案数,长见识了 第一问: DP 同 ...
- 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】
题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...
- P1439 最长公共子序列(nlognLCS问题)
模板 #include <iostream> #include <cstdio> using namespace std; ],loc[],b[],k,n,l,r,mid; i ...
- 最长公共子序列问题(LCS) 洛谷 P1439
题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...
- 洛谷 P1439 【模板】最长公共子序列
\[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...
随机推荐
- Codeforces Round #449 (Div. 2)-897A.Scarborough Fair(字符替换水题) 897B.Chtholly's request(处理前一半) 897C.Nephren gives a riddle(递归)
A. Scarborough Fair time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 2017ecjtu-summer training #11 POJ 1018
Communication System Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 29218 Accepted: ...
- Vue-cli搭建完项目,各文件解释
脚手架vue-cli搭建完成后,会生成一些文件,总结学习一下这些文件是做什么用的:1.一级目录: build和config文件夹是wbepack配置的文件夹: node_modules是在我npm i ...
- 内核知识第12讲,SSDT表.以用户模式到系统模式的两种方式.
内核知识第12讲,SSDT表.以用户模式到系统模式的两种方式. 一丶IDT解析. 我们知道.IDT表中存放着各种中断信息.比如当我们调用int 3的时候,则会调用IDT表中的第三项来进行调用. 而函数 ...
- syntax error, unexpected '['
在用ThinkPHP框架做了个小的应用 我在本地搭建的服务器,进行测试好着的. 但是放到别的地方后,出现以下报错 syntax error, unexpected '[' 错误位置是在我自己写的一个A ...
- 坑爹的file_exists
介绍 我发现了一个问题,今天与大家分享.我把整个过程描述一下. 问题 公司有个框架是基于smarty写的,我负责php的升级,维护人员把新环境布上来之后,测试人员找我提出经常报错(错 ...
- Java数据库基础(JDBC)
JDBC(Java Data Base Connectivity):SUN公司为了简化统一对数据库的操作,定义了一套Java操作数据库的规范,称之为JDBC: 这样应用程序就不需要关注数据库底层的详细 ...
- C语言 模2除法
C语言中的模2除法: 模2除做法与算术除法类似,但每一位除(减)的结果不影响其它位,即不向上一位借位.所以实际上就是异或.然后再移位移位做下一位的模2减. 步骤如下: a.用除数对被除数最高n位做模2 ...
- 2017-07-07(zip unzip gzip gunzip)
zip压缩格式 zip zip 压缩文件名 源文件 (压缩文件) zip -r 压缩文件名 源文件 (压缩目录) unzip unzip 压缩名 .gz压缩格式 gzip gz ...
- JVM-类的四种载入方式
package org.burning.sport.javase.classloader; public class ClassLoaderMain { public static void main ...