1222 最小公倍数计数

题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\)

\(n \le 10^{11}\)


卡内存!

枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是

\[\sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}]
\]

问题就是怎么求后面的式子了

一开始我是

\[f(n) = \sum_i \sum_j \sum_k [ijk \le n] = \sum_{i=1}^n g(i) \\
g(n) = \sum_{i=1}^n \sigma(i)
\]

杜教筛\(g\),方法是卷上\(\mu\),当然还要杜教筛\(\sum\mu\),但不影响复杂度,还是\(O(n^{\frac{2}{3}})\)

本机6.5s,改小预处理的大小后当然T了


然后又用分块的方法算\(g\),预处理前\(O(n^{2/3})\)的\(\sigma\)剩下的分块\(O({\sqrt{n}})\)计算,复杂度也是\(O(n^{\frac{2}{3}})\)

本机4.6s,改小预处理大小又T了...


最后还是用了tangjz的方法,统计\(abc \le n\)的数对个数,规定\(a\le b \le c\),然后a枚举\(n^{\frac{1}{3}}\),b枚举\(\sqrt{\frac{n}{a}}\)。最后乘上\(3!\)再减去\(a= b <c,\ a<b = c,\ a=b=c\)

这一部分的复杂度\(T'(n)=O(\sum_{i=1}^{n^\frac{1}{3}}{\sqrt{\frac{n}{i}}})=O(n^\frac{2}{3})\)


总体复杂度\(T(n)=O(\sum_{d=1}^{\sqrt{n}}{T'(\frac{n}{d^2})})=?O(n^\frac{2}{3})​\)

求积分好像是\(\sqrt{n}\)啊,我也不知道这是怎么算的

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
const int N=320000;
int U=316230;
inline ll read(){
char c=getchar(); ll x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} bool notp[N]; int p[N], mu[N];
void sieve(int n) {
mu[1]=1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
notp[ i*p[j] ] = 1;
if(i % p[j] == 0) {mu[ i*p[j] ] = 0; break;}
mu[ i*p[j] ] = -mu[i];
}
}
} inline ll cal(ll n) {
ll ans=0;
for(ll i=1; i*i*i <= n; i++) {
for(ll j=i; i*j*j <= n; j++) {
ans += (n/i/j - j + 1) * 6;
if(i == j) ans -= (n/i/j - j) * 3;
if(i != j) ans -= 3;
}
ans -= 5;
}
return ans;
} ll solve(ll n) {
ll ans=0;
int m = sqrt(n);
for(int i=1; i<=m; i++) if(mu[i]) ans += mu[i]>0 ? cal(n/i/i) : -cal(n/i/i);
return (ans + n) / 2;
}
int main() {
freopen("in", "r", stdin);
sieve(U);
ll l=read(), r=read();
printf("%lld", solve(r) - solve(l-1));
printf("\n\n%lf\n",(double)clock()/CLOCKS_PER_SEC);
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <ctime>
using namespace std;
typedef long long ll;
const int N=22000005;
int U=22000000;
inline ll read(){
char c=getchar(); ll x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} bool notp[N]; int p[N/10], mu[N], lp[N]; ll si[N];
void sieve(int n) {
mu[1]=1; si[1]=1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1, si[i] = lp[i] = 2;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
mu[t] = 0;
lp[t] = lp[i] + 1;
si[t] = si[i] / lp[i] * lp[t];
break;
}
mu[t] = -mu[i];
lp[t] = 2;
si[t] = si[i] * 2;
}
mu[i] += mu[i-1];
si[i] += si[i-1];
}
} namespace ha {
const int p = 1001001;
struct ha {
struct meow{int ne; ll val, r;} e[10000];
int cnt, h[p];
ha() {cnt=0; memset(h, 0, sizeof(h));}
inline void insert(ll x, ll val) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return;
e[++cnt] = (meow){h[u], val, x}; h[u] = cnt;
}
inline ll quer(ll x) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val;
return -1;
}
} hs, hu, me;
} using ha::hs; using ha::hu; using ha::me; ll dj_u(ll n) { //return 1;
if(n <= U) return mu[n];
if(hu.quer(n) != -1) return hu.quer(n);
ll ans = 1, r;
for(ll i=2; i<=n; i=r+1) {
r = n/(n/i);
ans -= (r-i+1) * dj_u(n/i);
}
hu.insert(n, ans);
return ans;
} ll dj_s(ll n) {
if(n <= U) return si[n];
if(hs.quer(n) != -1) return hs.quer(n);
dj_u(n);
ll ans = n, r, now, last = dj_u(1);
for(ll i=2; i<=n; i=r+1, last=now) {
r = n/(n/i); now = dj_u(r);
ans -= (now - last) * dj_s(n/i);
}
hs.insert(n, ans);
return ans;
}
ll cal(ll n) {
ll ans=0, r;
for(ll i=1; i<=n; i=r+1) {
r = n/(n/i);
ans += (r-i+1) * dj_s(n/i);
}
return ans;
}
ll solve(ll n) {
ll ans=0;
int m = sqrt(n);
for(ll i=1; i<=m; i++) if(mu[i] - mu[i-1]) ans += (mu[i] - mu[i-1]) * cal(n / (i*i));
return (ans + n) / 2;
}
ll l, r;
int main() {
freopen("in", "r", stdin);
sieve(U);
l=read(); r=read();
//printf("%lld", dj_u(r));
printf("%lld", solve(r) - solve(l-1));
printf("\n\n%lf\n",(double)clock()/CLOCKS_PER_SEC);
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
const int N=22000005;
int U=22000000;
inline ll read(){
char c=getchar(); ll x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} bool notp[N]; int p[N/10], mu[N], lp[N]; ll si[N];
void sieve(int n) {
mu[1]=1; si[1]=1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1, si[i] = lp[i] = 2;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
mu[t] = 0;
lp[t] = lp[i] + 1;
si[t] = si[i] / lp[i] * lp[t];
break;
}
mu[t] = -mu[i];
lp[t] = 2;
si[t] = si[i] * 2;
}
//mu[i] += mu[i-1];
si[i] += si[i-1];
}
}
inline ll g(ll n) { if(n <= U) return si[n];
ll ans=0, r;
for(ll i=1; i<=n; i=r+1) {
r = n/(n/i);
ans += (r-i+1) * (n/i);
}
return ans;
}
ll cal(ll n) {
ll ans=0, r;
for(ll i=1; i<=n; i=r+1) {
r = n/(n/i);
ans += (r-i+1) * g(n/i);
}
return ans;
} ll solve(ll n) {
ll ans = 0;
int m = sqrt(n);
for(ll i=1; i<=m; i++)
if(mu[i]) ans += mu[i] * cal(n / (i*i));
return (ans + n) / 2;
} ll l, r;
int main() {
freopen("in", "r", stdin);
sieve(U);
l=read(); r=read();
printf("%lld", solve(r) - solve(l-1));
printf("\n\n%lf\n",(double)clock()/CLOCKS_PER_SEC);
}

51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]的更多相关文章

  1. [51nod1227]平均最小公倍数(莫比乌斯反演+杜教筛)

    题意 求 $\sum_{i=a}^b \sum_{j=1}^i \frac{lcm(i,j)}{i}$. 分析 只需要求出前缀和, $$\begin{aligned}\sum_{i=1}^n \sum ...

  2. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  5. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  6. 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)

    题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...

  7. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  8. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

  9. [HDU 5608]Function(莫比乌斯反演 + 杜教筛)

    题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f ...

随机推荐

  1. HDU_4826

    Labyrinth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. Linux系统调优权威指南

    1.关闭SELINUX功能1.1 修改配置文件,使关闭SELINUX永久生效sed 's#SELINUX=enforcing#SELINUX=disables#g' /etc/selinux/conf ...

  3. .NET MongoDB Driver GridFS 2.2原理及使用示例

    一.API解读 1 GridFSBucketOptions 1)public string BucketName { get; set; } 获取或设置bucket名称 2)public int Ch ...

  4. layui之事件监听(table)

    这几天在学习layui,感觉这框架挺好用的,前后端都适用,许多原本比较复杂的东西用该框架很容易就能实现. 今天看了table里的事件监听这个知识点. 语法:table.on('event(filter ...

  5. windows server 2008使用nginx转发API异常解决办法

    公司比较传统,一直使用的JSP做项目,没有遇到过跨域问题. 最近因为公司接到一个微信spa项目,因为考虑到项目需要调用老接口,斗胆选择nginx(1.12.1)做接口转发服务, 开发环境使用的win1 ...

  6. 【笔记】npm 安装 vue-cli

    最近完成了慕课网的 高仿饿了么webApp 课程,对于vue 的认识有了更深一步的认识,但是其脚手架 vue-cli 的安装流程还是有点懵,于是今天重新试了一遍加深认识 网上参考过一些有用的教程在这里 ...

  7. 安装新的int 9中断例程2

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  8. mybatis-枚举类型的typeHandler&自定义枚举类型typeHandler

    MyBatis内部提供了两个转化枚举类型的typeHandler给我们使用. org.apache.ibatis.type.EnumTypeHandler 是使用枚举字符串名称作为参数传递的 org. ...

  9. linux_samba服务安装

    什么是samba服务? 用于Windows和linux系统之间实现共享文件的目的服务 如何配置其服务? Linux端: 搭建服务 1. 安装samba yum install -y samba 2. ...

  10. Servlet--传参和接参

    OK,现在基本的Servlet接口和常用类都整理的差不多的,本篇博客开始整理Servlet和页面的交互. 1,接参 以下几个常用的方法: getParameter public String getP ...