传送门

题意:

七颗星,第$i$课星用第$j$个宝石有$p[i][j]$的概率成功,失败将为$g[i][j]$颗星;

第$j$个宝石化费$c[j]$

求最小期望化费


$MD$本来自己思路挺对的看了半天题解还不知道他的高斯消元是什么意思....

本题逆推并不好,(真的需要高斯消元),正推比较好

$f[i]$表示有$i$颗星的期望化费

$f[i]=min{f[i-1]+c_j+(1-p_{i,j})*(f[i]-f[g_{i,j}]) }$

减法成立是因为期望的线性性质

变形一下直接$DP$就好了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-,INF=1e100;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,c[N],sum,g[][N];
double p[][N];
double d[],x;
void dp(){
d[]=;
for(int i=;i<=;i++){
d[i]=INF;
for(int j=;j<=n;j++) if(p[i][j]){
double _=d[i-]+c[j]-(-p[i][j])*d[g[i][j]];
d[i]=min(d[i],_/p[i][j]);
}
}
printf("%.10lf",d[]);
}
int main(){
// freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) c[i]=read();
for(int i=;i<=;i++){
bool flag=;
for(int j=;j<=n;j++) scanf("%lf",&p[i][j]),flag|=( abs(p[i][j])>eps );
if(!flag) {puts("-1");return ;}
}
for(int i=;i<=;i++) for(int j=;j<=n;j++) g[i][j]=i--read();
dp();
}

51NOD 1705 七星剑 [DP 期望的线性性质]的更多相关文章

  1. ●51NOD 1705 七星剑

    题链: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1705题解: 期望dp,期望的线性性质 (首先对于第k颗星,一定只 ...

  2. 51Nod 1705 七星剑

    一道很新颖的概率DP,我看数据范围还以为是有指数级别的复杂度的呢 记得有人说期望要倒着推,但放在这道题上,就咕咕了吧. 我们考虑正着概率DP,设\(fi\)表示将剑升到\(i\)颗星花费的期望,这样我 ...

  3. luogu P6835 概率DP 期望

    luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...

  4. 浅谈期望的线性性(可加性)【CodeForces280c】【bzoj3036】【bzoj3143】

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=63399955 向大(hei)佬(e)势力学(di ...

  5. bzoj1415[NOI2005]聪聪和可可-期望的线性性

    这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...

  6. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  7. [CF697D]Puzzles 树形dp/期望dp

    Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...

  8. Problem Arrangement ZOJ - 3777(状压dp + 期望)

    ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...

  9. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

随机推荐

  1. hbmy周赛1--D

    D - Toy Cars Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submi ...

  2. 基于ARM的车牌识别技术研究与实现

    在云盘里包含了我本科毕业设计的全部资料和代码.主要涉及下面摘要中的几个部分.虽然系统无法实用,但是适合机器视觉和嵌入式方向的入门.希望能对有志从事相关方向的朋友有所帮助.本人现在在深圳从事机器视觉算法 ...

  3. GBK,UTF8是什么?有什么区别,做网站选择哪种好?

    GBK包含全部中文字符: UTF-8则包含全世界所有国家需要用到的字符. GBK是在国家标准GB2312基础上扩容后兼容GB2312的标准(好像还不是国家标准) UTF-8编码的文字可以在各国各种支持 ...

  4. vue前后台数据交互vue-resource文档

    地址:https://segmentfault.com/a/1190000007087934 Vue可以构建一个完全不依赖后端服务的应用,同时也可以与服务端进行数据交互来同步界面的动态更新. Vue通 ...

  5. LAMP环境跟LNMP环境有什么不同,主要用什么地方

    LAMP即Linux+Apache+Mysql/MariaDB+Perl/PHP/Python Linux+Apache+Mysql/MariaDB+Perl/PHP/Python一组常用来搭建动态网 ...

  6. jquery 循环获取checkBox的值,以及对复选框选中,取消,操作按钮

    法一:jquery 循环获取选中checkBox框的值 function checkeds() { $("input:checkbox").each(function(index) ...

  7. oracle11g安装教程(注意事项及图文教程)

    Oracle安装与重装注意事项 1.安装oracle(**) 注意:安装Oracle之前确定自己的主机(计算机)名要保证计算机名是英文的. 1.oracle的安装文件不要放在含有中文的目录当中,如:d ...

  8. Java泛型范例

    class Point<T>{ // 此处可以随便写标识符号,T是type的简称 private T var ; // var的类型由T指定,即:由外部指定 public T getVar ...

  9. xss防御

    http://blog.csdn.net/ghsau/article/details/17027893

  10. ASP.NET MVC5 中百度ueditor富文本编辑器的使用

    随着网站信息发布内容越来越多,越来越重视美观,富文本编辑就是不可缺少的了,众多编辑器比较后我选了百度的ueditor富文本编辑器. 百度ueditor富文本编辑器分为两种一种是完全版的ueditor, ...