hdu-4635(tarjan缩点)
题意:先给你一个n个点,m条边的有向图,问你最多能够增加多少条边,使得这个图不是一个强连通图
解题思路:考虑最多要添加的边数,所以如果能把初始图划分成两个部分,每个部分都是完全图,这两个部分分别用单向边连接,这样一定是最优的,所以,首先先缩点,因为一个强连通子图的所有点一定要在同一个部分中,缩完点后考虑只有入度和出度为0的点成一个部分才能有最优解,跑所有满足情况的点,当某个点的入度或者出度为0的时候,因为边数最多为两个部分的完全子图+两个部分点的乘积(单向边)-m条给出的边
代码:
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
typedef long long ll;
const int maxn=2e5;
struct Edge
{
ll to;
ll next;
}edge[maxn];
ll low[maxn],dfn[maxn],instack[maxn],sccno[maxn],visit[maxn],head[maxn];
ll scc_cnt,n,m,step,index,cnt;
ll x[maxn],y[maxn];
ll indeg[maxn],outdeg[maxn];
vector<ll>scc[maxn];
bool cnp(int x,int y)
{
return y>x;
}
void add(ll u,ll v)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt++;
}
void tarjan(ll u)
{
low[u]=dfn[u]=++step;
instack[++index]=u;
visit[u]=;
for(ll i=head[u];i!=-;i=edge[i].next)
{
if(!dfn[edge[i].to])
{
tarjan(edge[i].to);
low[u]=min(low[u],low[edge[i].to]);/*更新儿子节点;*/
}
else if(visit[edge[i].to])
{
low[u]=min(low[u],dfn[edge[i].to]);/*更新回边;*/
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
do
{
scc[scc_cnt].push_back(instack[index]);
sccno[instack[index]]=scc_cnt;
visit[instack[index]]=;
index--;
}
while(u!=instack[index+]);
}
return;
}
void init()
{
memset(indeg,,sizeof(indeg));
memset(outdeg,,sizeof(outdeg));
memset(head,-,sizeof(head));
cnt=step=index=scc_cnt=;
memset(visit,,sizeof(visit));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
for(int i=;i<=n;i++)
scc[i].clear();
}
int main()
{
ll t;
ll cot=;
scanf("%lld",&t);
while(t--)
{
cot++;
scanf("%lld%lld",&n,&m);init();
for(int i=;i<=m;i++)
{
scanf("%lld%lld",&x[i],&y[i]);
add(x[i],y[i]);
}
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i);
printf("Case %d: ",cot);
if(scc_cnt==)
printf("-1\n");
else
{
for(int i=;i<=m;i++)
{
if(sccno[x[i]]==sccno[y[i]])
continue;
else
{
indeg[sccno[x[i]]]++;outdeg[sccno[y[i]]]++;
}
}
ll tmpans=;ll ans=;
for(int i=;i<=scc_cnt;i++)
{
if(indeg[i]==||outdeg[i]==)
{
tmpans=;
ll tmp=n-scc[i].size();
tmpans+=(tmp)*(tmp-);
tmpans+=(scc[i].size())*(scc[i].size()-);
tmpans+=(scc[i].size())*tmp;tmpans-=m;
ans=max(ans,tmpans);
}
}
printf("%lld\n",ans);
}
}
}
hdu-4635(tarjan缩点)的更多相关文章
- F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解
题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 (完全图 和 有向图缩点)
题目链接:HDU 4635 题目大意: 给你一个有向图,加有向边,使得这个图是简单有向图.问你最多加多少条有向边. 简单有向图: 1.不存在有向重边. 2.不存在图循环.(注意是不存在 “图” 循环 ...
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- 【HDOJ2767】【Tarjan缩点】
http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/O ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- King's Quest —— POJ1904(ZOJ2470)Tarjan缩点
King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...
- 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率
2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1638 Solved: 433[Submit][Statu ...
随机推荐
- kernel 进阶API
1. #define cond_resched() ({ \ ___might_sleep(__FILE__, __LINE__, ); \ _cond_resched(); \ }) int __s ...
- python学习第九讲,python中的数据类型,字符串的使用与介绍
目录 python学习第九讲,python中的数据类型,字符串的使用与介绍 一丶字符串 1.字符串的定义 2.字符串的常见操作 3.字符串操作 len count index操作 4.判断空白字符,判 ...
- k8s部署使用Dashboard(十)--技术流ken
安装Dashboard 前面博客Kubernetes 所有的操作我们都是通过命令行工具 kubectl 完成的.为了提供更丰富的用户体验,Kubernetes 还开发了一个基于 Web 的 Dashb ...
- 字符型液晶屏模拟控件(En)
A replica CLCD module control. Initiated on May 5, 2012 Updated on Feb 21, 2017 Copyright 2012-2017 ...
- DSAPI实现简单的透明窗体
代码 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load Dim B As New Bitmap( ...
- [.NET] 一步步打造一个简单的 MVC 电商网站 - BooksStore(一)
一步步打造一个简单的 MVC 电商网站 - BooksStore(一) 本系列的 GitHub地址:https://github.com/liqingwen2015/Wen.BooksStore &l ...
- Java 适配器(Adapter)模式
一.什么是适配器模式: 把一个接口变成另外一个接口,使得原本因接口不匹配无法一起工作的两个类一起工作. 二.适配器模式的分类和结构: 适配器模式有类的适配器模式和对象的适配器模式两种. 1.类的适配器 ...
- vue 项目中引用百度地图
新建map.js export const BaiduMap = { init: function() { const BMapURL = 'https://api.map.baidu.com/api ...
- C# 利用键值对取代Switch...Case语句
swich....case 条件分支多了之后,会严重的破坏程序的美观性. 比如这个 上述代码是用于两个进程之间通信的代码,由于通信的枚举特别的多,所以case的分支特别的多.导致了代码的可读性,可维护 ...
- dede后台编辑器更改
1.下载百度开发的UEditor编辑器(对应版本): 2. 解压下载的zip文件: 3.将解压后得到的文件夹拷贝到您网站目录下的include文件夹下并改名为ueditor: 4.将inc文件夹里边的 ...