SDP(8):文本式数据库-MongoDB-Scala基本操作
MongoDB是一种文本式数据库。与传统的关系式数据库最大不同是MongoDB没有标准的格式要求,即没有schema,合适高效处理当今由互联网+商业产生的多元多态数据。MongoDB也是一种分布式数据库,充分具备大数据处理能力和高可用性。MongoDB提供了scala终端驱动mongo-scala-driver,我们就介绍一下MongoDB数据库和通过scala来进行数据操作编程。
与关系数据库相似,MongoDB结构为Database->Collection->Document。Collection对应Table,Document对应Row。因为MongoDB没有schema,所以Collection中的Document可以是不同形状格式的。在用scala使用MongoDB之前必须先建立连接,scala-driver提供了多种连接方式:
val client1 = MongoClient()
val client2 = MongoClient("mongodb://localhost:27017") val clusterSettings = ClusterSettings.builder()
.hosts(List(new ServerAddress("localhost:27017")).asJava).build()
val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build()
val client = MongoClient(clientSettings)
下面是一些对应的MongoClient构建函数:
/**
* Create a default MongoClient at localhost:27017
*
* @return MongoClient
*/
def apply(): MongoClient = apply("mongodb://localhost:27017") /**
* Create a MongoClient instance from a connection string uri
*
* @param uri the connection string
* @return MongoClient
*/
def apply(uri: String): MongoClient = MongoClient(uri, None) /**
* Create a MongoClient instance from a connection string uri
*
* @param uri the connection string
* @param mongoDriverInformation any driver information to associate with the MongoClient
* @return MongoClient
* @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections.
*/
def apply(uri: String, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {...}
/**
* Create a MongoClient instance from the MongoClientSettings
*
* @param clientSettings MongoClientSettings to use for the MongoClient
* @return MongoClient
*/
def apply(clientSettings: MongoClientSettings): MongoClient = MongoClient(clientSettings, None) /**
* Create a MongoClient instance from the MongoClientSettings
*
* @param clientSettings MongoClientSettings to use for the MongoClient
* @param mongoDriverInformation any driver information to associate with the MongoClient
* @return MongoClient
* @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections.
*/
def apply(clientSettings: MongoClientSettings, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {
与MongoDB建立连接后可用选定Database:
val db = client.getDatabase("testdb")
由于没有格式限制,所以testdb不需要预先构建,像文件系统的directory一样,不存在时可以自动创建。同样,db内的collection也是可以自动创建的,因为不需要预先设定字段格式(no-schema):
val db: MongoDatabase = client.getDatabase("testdb")
val userCollection: MongoCollection[Document] = db.getCollection("users")
collection中Document类的构建函数如下:
/**
* Create a new document from the elems
* @param elems the key/value pairs that make up the Document. This can be any valid `(String, BsonValue)` pair that can be
* transformed into a [[BsonElement]] via [[BsonMagnets.CanBeBsonElement]] implicits and any [[BsonTransformer]]s that
* are in scope.
* @return a new Document consisting key/value pairs given by `elems`.
*/
def apply(elems: CanBeBsonElement*): Document = {
val underlying = new BsonDocument()
elems.foreach(elem => underlying.put(elem.key, elem.value))
new Document(underlying)
}
Document可以通过CanbeBsonElement构建。CanbeBsonElement是一种key/value结构:
/**
* Represents a single [[BsonElement]]
*
* This is essentially a `(String, BsonValue)` key value pair. Any pair of `(String, T)` where type `T` has a [[BsonTransformer]] in
* scope into a [[BsonValue]] is also a valid pair.
*/
sealed trait CanBeBsonElement {
val bsonElement: BsonElement /**
* The key of the [[BsonElement]]
* @return the key
*/
def key: String = bsonElement.getName /**
* The value of the [[BsonElement]]
* @return the BsonValue
*/
def value: BsonValue = bsonElement.getValue
} /**
* Implicitly converts key/value tuple of type (String, T) into a `CanBeBsonElement`
*
* @param kv the key value pair
* @param transformer the implicit [[BsonTransformer]] for the value
* @tparam T the type of the value
* @return a CanBeBsonElement representing the key/value pair
*/
implicit def tupleToCanBeBsonElement[T](kv: (String, T))(implicit transformer: BsonTransformer[T]): CanBeBsonElement = {
new CanBeBsonElement {
override val bsonElement: BsonElement = BsonElement(kv._1, transformer(kv._2))
}
}
有了上面这个tupleToCanBeBsonElement隐式转换函数就可以用下面的方式构建Document了:
val doc: Document = Document("_id" -> , "name" -> "MongoDB", "type" -> "database",
"count" -> , "info" -> Document("x" -> , "y" -> ))
这种key/value关系对应了一般数据库表中的字段名称/字段值。下面我们尝试建两个不同格式的Document并把它们加入到同一个collection里:
val alice = Document("_id" -> , "name" -> "alice wong", "age" -> )
val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable") val addAlice: Observable[Completed] = userCollection.insertOne(alice)
val addTiger: Observable[Completed] = userCollection.insertOne(tiger)
上面这个例子证明了MongoDB的no-schema特性。用insert方法加入数据返回结果是个Obervable类型。这个类型与Future很像:只是一种运算的描述,必须通过subscribe方法来实际运算获取结果:
addAlice.subscribe(new Observer[Completed] {
override def onComplete(): Unit = println("insert alice completed.")
override def onNext(result: Completed): Unit = println("insert alice sucessful.")
override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}")
})
又或者转成Future后用Future方法如Await来运算:
def headResult(observable: Observable[Completed]) = Await.result(observable.head(), seconds)
val r1 = headResult(addTiger)
Mongo-Scala提供了Observable到Future的转换函数:
/**
* Collects the [[Observable]] results and converts to a [[scala.concurrent.Future]].
*
* Automatically subscribes to the `Observable` and uses the [[collect]] method to aggregate the results.
*
* @note If the Observable is large then this will consume lots of memory!
* If the underlying Observable is infinite this Observable will never complete.
* @return a future representation of the whole Observable
*/
def toFuture(): Future[Seq[T]] = {
val promise = Promise[Seq[T]]()
collect().subscribe((l: Seq[T]) => promise.success(l), (t: Throwable) => promise.failure(t))
promise.future
} /**
* Returns the head of the [[Observable]] in a [[scala.concurrent.Future]].
*
* @return the head result of the [[Observable]].
*/
def head(): Future[T] = {
import scala.concurrent.ExecutionContext.Implicits.global
headOption().map {
case Some(result) => result
case None => null.asInstanceOf[T] // scalastyle:ignore null
}
}
也可以用insertMany来成批加入:
val peter = Document("_id" -> , "first" -> "peter", "age" -> "old")
val chan = Document("last" -> "chan", "family" -> "chan's")
val addMany = userCollection.insertMany(List(peter,chan))
val r2 = headResult(addMany)
现在我们可以用count得出usersCollection中Document数量和用find把所有Document都印出来:
userCollection.count.head.onComplete {
case Success(c) => println(s"$c documents in users collection")
case Failure(e) => println(s"count() error: ${e.getMessage}")
}
userCollection.find().toFuture().onComplete {
case Success(users) => users.foreach(println)
case Failure(e) => println(s"find error: ${e.getMessage}")
}
scala.io.StdIn.readLine()
显示结果:
insert alice sucessful.
insert alice completed.
documents in users collection
Document((_id,BsonInt32{value=}), (name,BsonString{value='alice wong'}), (age,BsonInt32{value=}))
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437602}), (first,BsonString{value='tiger'}), (last,BsonString{value='chan'}), (name,BsonString{value='tiger chan'}), (age,BsonString{value='unavailable'}))
Document((_id,BsonInt32{value=}), (first,BsonString{value='peter'}), (age,BsonString{value='old'}))
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437603}), (last,BsonString{value='chan'}), (family,BsonString{value='chan's'}))
这个BsonString很碍眼,用隐式转换来把它转成String:
object Helpers { implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] {
override val converter: (Document) => String = (doc) => doc.toJson
} implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] {
override val converter: (C) => String = (doc) => doc.toString
} trait ImplicitObservable[C] {
val observable: Observable[C]
val converter: (C) => String def results(): Seq[C] = Await.result(observable.toFuture(), seconds)
def headResult() = Await.result(observable.head(), seconds)
def printResults(initial: String = ""): Unit = {
if (initial.length > ) print(initial)
results().foreach(res => println(converter(res)))
}
def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}")
} }
现在再列印:
userCollection.find().printResults("all documents:") all documents:{ "_id" : , "name" : "alice wong", "age" : }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : , "first" : "peter", "age" : "old" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" }
现在可读性强多了。find()无条件选出所有Document。MongoDB-Scala通过Filters对象提供了完整的查询条件构建函数如equal:
/**
* Creates a filter that matches all documents where the value of the field name equals the specified value. Note that this does
* actually generate a `\$eq` operator, as the query language doesn't require it.
*
* A friendly alias for the `eq` method.
*
* @param fieldName the field name
* @param value the value
* @tparam TItem the value type
* @return the filter
* @see [[http://docs.mongodb.org/manual/reference/operator/query/eq \$eq]]
*/
def equal[TItem](fieldName: String, value: TItem): Bson = eq(fieldName, value)
equal返回Bson,我们也可以把多个Bson组合起来形成一个更复杂的查询条件:
userCollection.find(and(gte("age",),exists("name",true)))
好了,现在我们可以测试各种查询条件了:
userCollection.find(notEqual("_id",)).printResults("id != 3:")
userCollection.find(equal("last", "chan")).printResults("last = chan:")
userCollection.find(and(gte("age",),exists("name",true))).printResults("age >= 24")
userCollection.find(or(gte("age",),equal("first","tiger"))).printResults("first = tiger")
显示结果:
id != :{ "_id" : , "name" : "alice wong", "age" : }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" }
last = chan:{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" }
age >= { "_id" : , "name" : "alice wong", "age" : }
first = tiger{ "_id" : , "name" : "alice wong", "age" : }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
下面是本次示范的源代码:
build.sbt
name := "learn-mongo" version := "0.1" scalaVersion := "2.12.4" libraryDependencies := Seq(
"org.mongodb.scala" %% "mongo-scala-driver" % "2.2.1",
"com.lightbend.akka" %% "akka-stream-alpakka-mongodb" % "0.17"
)
MongoScala101.scala
import org.mongodb.scala._
import scala.collection.JavaConverters._
import org.mongodb.scala.connection.ClusterSettings
import scala.concurrent._
import scala.concurrent.duration._
import scala.util._
import org.mongodb.scala.model.Filters._
object MongoScala101 extends App {
import scala.concurrent.ExecutionContext.Implicits.global
// val client1 = MongoClient()
// val client2 = MongoClient("mongodb://localhost:27017") val clusterSettings = ClusterSettings.builder()
.hosts(List(new ServerAddress("localhost:27017")).asJava).build()
val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build()
val client = MongoClient(clientSettings) val db: MongoDatabase = client.getDatabase("testdb")
val userCollection: MongoCollection[Document] = db.getCollection("users")
val deleteAll = userCollection.deleteMany(notEqual("_id", ))
deleteAll.head.onComplete {
case Success(c) => println(s"delete sucessful $c")
case Failure(e) => println(s"delete error: ${e.getMessage}")
} scala.io.StdIn.readLine()
val delete3 = userCollection.deleteMany(equal("_id", ))
delete3.head.onComplete {
case Success(c) => println(s"delete sucessful $c")
case Failure(e) => println(s"delete error: ${e.getMessage}")
}
scala.io.StdIn.readLine() val doc: Document = Document("_id" -> , "name" -> "MongoDB", "type" -> "database",
"count" -> , "info" -> Document("x" -> , "y" -> )) val alice = Document("_id" -> , "name" -> "alice wong", "age" -> )
val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable") val addAlice: Observable[Completed] = userCollection.insertOne(alice)
val addTiger: Observable[Completed] = userCollection.insertOne(tiger) addAlice.subscribe(new Observer[Completed] {
override def onComplete(): Unit = println("insert alice completed.")
override def onNext(result: Completed): Unit = println("insert alice sucessful.")
override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}")
}) def headResult(observable: Observable[Completed]) = Await.result(observable.head(), seconds)
val r1 = headResult(addTiger) val peter = Document("_id" -> , "first" -> "peter", "age" -> "old")
val chan = Document("last" -> "chan", "family" -> "chan's")
val addMany = userCollection.insertMany(List(peter,chan))
val r2 = headResult(addMany) import Helpers._
userCollection.count.head.onComplete {
case Success(c) => println(s"$c documents in users collection")
case Failure(e) => println(s"count() error: ${e.getMessage}")
}
userCollection.find().toFuture().onComplete {
case Success(users) => users.foreach(println)
case Failure(e) => println(s"find error: ${e.getMessage}")
}
scala.io.StdIn.readLine() userCollection.find().printResults("all documents:")
userCollection.find(notEqual("_id",)).printResults("id != 3:")
userCollection.find(equal("last", "chan")).printResults("last = chan:")
userCollection.find(and(gte("age",),exists("name",true))).printResults("age >= 24")
userCollection.find(or(gte("age",),equal("first","tiger"))).printResults("first = tiger") client.close() println("end!!!") } object Helpers { implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] {
override val converter: (Document) => String = (doc) => doc.toJson
} implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] {
override val converter: (C) => String = (doc) => doc.toString
} trait ImplicitObservable[C] {
val observable: Observable[C]
val converter: (C) => String def results(): Seq[C] = Await.result(observable.toFuture(), seconds)
def headResult() = Await.result(observable.head(), seconds)
def printResults(initial: String = ""): Unit = {
if (initial.length > ) print(initial)
results().foreach(res => println(converter(res)))
}
def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}")
} }
SDP(8):文本式数据库-MongoDB-Scala基本操作的更多相关文章
- 【网络爬虫入门05】分布式文件存储数据库MongoDB的基本操作与爬虫应用
[网络爬虫入门05]分布式文件存储数据库MongoDB的基本操作与爬虫应用 广东职业技术学院 欧浩源 1.引言 网络爬虫往往需要将大量的数据存储到数据库中,常用的有MySQL.MongoDB和Red ...
- SDP(10):文本式大数据运算环境-MongoDB-Engine功能设计
为了让前面规划的互联网+数据平台能有效对电子商务数据进行管理及实现大数据统计功能,必须在平台上再增加一个MongDB-Engine:数据平台用户通过传入一种Context来指示MongoDB-Engi ...
- mariadb_1 数据库介绍及基本操作
数据库介绍 1.什么是数据库? 简单的说,数据库就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织,存储的,我们可以通过数据库提供的多种方法来管理 ...
- 数据库MongoDB
一.MongoDB简介 MongoDB是由c++语言编写的,是一个基于分布式文件存储的开源数据库系统,在高负载的情况下,添加更多的节点,可以保证服务器性能.MongoDB旨在为web应用提供扩展的高性 ...
- 孤荷凌寒自学python第六十六天学习mongoDB的基本操作并进行简单封装5
孤荷凌寒自学python第六十六天学习mongoDB的基本操作并进行简单封装5并学习权限设置 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十二天. 今天继续学习mongo ...
- 孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4
孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十一天. 今天继续学习mongoDB的简单操作 ...
- 孤荷凌寒自学python第六十四天学习mongoDB的基本操作并进行简单封装3
孤荷凌寒自学python第六十四天学习mongoDB的基本操作并进行简单封装3 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十天. 今天继续学习mongoDB的简单操作, ...
- 孤荷凌寒自学python第六十三天学习mongoDB的基本操作并进行简单封装2
孤荷凌寒自学python第六十三天学习mongoDB的基本操作并进行简单封装2 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第九天. 今天继续学习mongoDB的简单操作, ...
- 孤荷凌寒自学python第六十二天学习mongoDB的基本操作并进行简单封装1
孤荷凌寒自学python第六十二天学习mongoDB的基本操作并进行简单封装1 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第八天. 今天开始学习mongoDB的简单操作, ...
随机推荐
- Java 敏感词过滤,Java 敏感词替换,Java 敏感词工具类
Java 敏感词过滤,Java 敏感词替换,Java 敏感词工具类 =========================== ©Copyright 蕃薯耀 2017年9月25日 http://www ...
- Java hashtable和hastmap的区别
1. 继承和实现区别 Hashtable是基于陈旧的Dictionary类,完成了Map接口:HashMap是Java 1.2引进的Map接口的一个实现(HashMap继承于AbstractMap,A ...
- MYSQL DISTINCT Optimization
在很多情况下,Distinct和order by的组合需要建立一个内存临时表. 因为distinct关键字可能利用group by,所以了解下mysql如何处理group by有帮助. distin ...
- java实现最小生成树的prim算法和kruskal算法
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...
- Linxu指令--crond
前一天学习了 at 命令是针对仅运行一次的任务,循环运行的例行性计划任务,linux系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工作,因此这个 ...
- JavaWeb项目架构之Redis分布式日志队列
架构.分布式.日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Redis做消息队列罢了. 前言 为什么需要消息队列? 当系统中出现"生产"和" ...
- Windows下为PHP安装redis扩展
1.使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本. 2.下载 php_redis-2.2.7-5.5-ts-vc11-x86.zip 和 php_igbinary-2.0.5- ...
- AM解调的FPGA实现
一.说明: 功能:AM解调 平台:Vivado 2016.4 和 Matlab R2017a 二.原理: 1.AM解调原理 模拟电路中采用"包络检波"的方法: 数字电路中采用类似的 ...
- Spring事务不回滚原因分析
Synchronized用于线程间的数据共享,而ThreadLocal则用于线程间的数据隔离. 在我完成一个项目的时候,遇到了一个Spring事务不回滚的问题,通过aspectJ和@Transacti ...
- (三)surging 微服务框架使用系列之我的第一个服务(审计日志)
前言:前面准备了那么久的准备工作,现在终于可以开始构建我们自己的服务了.这篇博客就让我们一起构建自己的第一个服务---审计日志. 首先我们先创建两个项目,一个控制台的服务启动项目,一个业务的实现项目. ...