bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述
蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨。川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地、同时合理分配好自己的体力是一件非常重要的事情。
由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响)。某一天他打算骑\(N\)段路,每一段内的路况可视为相同:对于第\(i\)段路,我们给出有关这段路况的3个参数 \(s_i ,k_i ,v_i'\) ,其中 \(s_i\) 表示这段路的长度, \(k_i\) 表示这段路的风阻系数, \(v_i'\) 表示这段路上的风速(表示在这段路上他遇到了顺风,反之则意味着他将受逆风影响)。若某一时刻在这段路上骑车速度为\(v\),则他受到的风阻大小为 \(F = k_i ( v - v_i' )^2\)(这样若在长度为\(s\)的路程内保持骑行速度\(v\)不变,则他消耗能量(做功)\(E = k_i ( v - vi' )^2 s\)。
设蛋蛋在这天开始时的体能值是 \(Eu\) ,请帮助他设计一种行车方案,使他在有限的体力内用最短的时间到达目的地。请告诉他最短的时间\(T\)是多少。
输入输出格式
输入格式:
第一行包含一个正整数\(N\)和一个实数\(Eu\),分别表示路段的数量以及蛋蛋的体能值。
接下来\(N\)行分别描述\(N\)个路段,每行有3个实数 \(s_i , k_i , v_i'\) ,分别表示第 \(i\) 段路的长度,风阻系数以及风速。
输出格式:
输出一个实数\(T\),表示蛋蛋到达目的地消耗的最短时间,要求至少保留到小数点后\(6\)位。
输入输出样例
输入样例#1:
3 10000
10000 10 5
20000 15 8
50000 5 6
输出样例#1:
12531.34496464
说明
【数据规模与约定】
对于10%的数据,\(N=1\);
对于40%的数据,\(N<=2\);
对于60%的数据,\(N<=100\);
对于80%的数据,\(N<=1000\);
对于所有数据,\(N \leq10000\),\(0 \leq Eu \leq 10^8,0 < s_i \leq 100000,0 < k_i \leq 1,-100 < v_i' < 100\)。数据保证最终的答案不会超过\(10^5\)。
【提示】
必然存在一种最优的体力方案满足:蛋蛋在每段路上都采用匀速骑行的方式。
题解
先讲一讲拉格朗日乘数法:
拉格朗日乘数法是用来解决多元函数的最优值问题(最大、最小)
一般形式为:函数\(f(x_1,x_2,x_3..x_n)\)满足限制\(g_i(x_1,x_2,x_3...x_n)=0,(i\in 1,2,3....m)\)
解法:定义\(h(x_1,x_2,x_3...x_n,\lambda_1,\lambda_2,\lambda_3...\lambda_m)=f(x_1,x_2,x_3...x_n)+\Sigma_{i=1}^m\lambda_ig_i(x_1,x_2,x_3...x_n)\)
函数\(h\)的极值就是函数\(f\)的最优值
\(h\)极值用导数求
再回到这道题,只需要满足一种限制:\(g(x)=\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')^2\leq Eu\),并且,当\(g(x)=Eu\)时最优;
于是就有\(g(x)\)函数:\(g(x)=\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')^2-Eu=0\)
\(f(x)\)函数为:\(f(x)=\Sigma_{i=1}^n \frac {s_i}{x_i}\),\(x_i\)为每段路的骑行速度
则\(h(x)=\Sigma_{i=1}^n \frac{s_i}{x_i}+\lambda\ast\Sigma s_i\ast k_i(x_i-v_i')^2-Eu\)
将它求导:\(h'(x)=-\Sigma_{i=1}^n \frac{s_i}{x_i^2}+2\ast\lambda\ast\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')\)
二分求\(h'(x)=0\)时的\(x\)值
二分时每一个\(x_i\)也是二分求
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<vector>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j))
using namespace std;
const QAQ N=10005;
QAQ n;
ORZ m;
struct data{
ORZ s,k,v;
}a[N];
ORZ l,r,ans,v[N];
OwO pd(ORZ lmd){
F(i,1,n){
ORZ l=a[i].v,r=1000000,ans=0;
F(j,1,100){
ORZ mid=(l+r)/2.0;
if(2*lmd*a[i].k*mid*mid*(mid-a[i].v)<=1.0) l=mid,ans=mid;
else r=mid;
}
v[i]=ans;
}
ORZ ans=0;
F(i,1,n) ans+=a[i].k*(v[i]-a[i].v)*(v[i]-a[i].v)*a[i].s;
return ans>=m;
}
QAQ main(){
scanf("%d%lf",&n,&m);
F(i,1,n) scanf("%lf%lf%lf",&a[i].s,&a[i].k,&a[i].v);
l=0;r=10000000;
F(i,1,100){
ORZ mid=(l+r)/2.0;
if(pd(mid)) l=mid;
else r=mid;
}
F(i,1,n) ans+=a[i].s/v[i];
printf("%.6lf\n",ans);
return 0;
}
bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)的更多相关文章
- [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...
- bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1033 Solved: ...
- BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...
- bzoj2876 [Noi2012]骑行川藏
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- [NOI2012]骑行川藏——拉格朗日乘子法
原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...
- bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】
详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...
- 题解 洛谷 P2179 【[NOI2012]骑行川藏】
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...
- 2876: [Noi2012]骑行川藏 - BZOJ
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- 【BZOJ】2876: [Noi2012]骑行川藏
题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...
随机推荐
- phpfpm配置 php中的坑
###### 记一些坑```//phpfpm配置pm.max_children = 最大并发数详细的答案:pm.max_children 表示 php-fpm 能启动的子进程的最大数量.因为 php- ...
- 怎么获取smtp服务器用户帐号和密码
在OE里工具-帐户..-添加-邮件 打开选项卡,依次填好,昵称,按下一步,邮箱地址,按下一步,填POP和SMTP服务器地址,按下一步,按用户名和密码,再按下一步就设置好了.有些邮件服务器在发信的时候, ...
- 关于php存储cookie时path存放路径放的详细介绍
以前在存储cookie时,没有用到path这个参数,最近开发中在存储cookie时,要用到path参数来决定存储的路径,结果一开始的时候一直取不到值,到最后详细看了一下path参数的介绍后,才顿悟.分 ...
- 深入理解:Linear Regression及其正则方法
这是最近看到的一个平时一直忽略但深入研究后发现这里面的门道还是很多,Linear Regression及其正则方法(主要是Lasso,Ridge, Elastic Net)这一套理论的建立花了很长一段 ...
- vue学习笔记(四)——Vue实例以及生命周期
1.Vue实例API 1.构造器(实例化) var vm = new Vue({ //选项 |-------DOM(3) | |-------el (提供一个在页面上已存在的 DOM 元素作为 V ...
- 前端css常用class命名id命名
1.常用id的命名: (1)页面结构 容器: container 页头:header 内容:content/container 页面主体:main 页尾:footer 导航:nav 侧栏:sideba ...
- sersync+rsync同步
(一)目标服务器(rsync):10.60.50.192 1.安装rsync yum -y install rsync 2.创建rsyncd.conf配置文件 vi /etc/rsyncd.conf ...
- tinyproxy实现https正向代理
安装 yum install tinyproxy -y 配置 # vim /etc/tinyproxy/tinyproxy.conf ## ## tinyproxy.conf -- tinyproxy ...
- JavaScript数组的22种方法
原文:http://www.cnblogs.com/xiaohuochai/p/5682621.html javascript中数组的22种方法 前面的话 数组总共有22种方法,本文将其分为对象继 ...
- Switch-case 内定义变量的问题
Switch-case 内定义变量的问题 这个问题需要分开讨论,C 语言和 C++ 的标准定义是不同的. C++ int Caset(int a) { switch (a) { case 1: int ...