Description

题库链接

给你两个正整数 \(p,k\) ,询问是否能够构造多项式 \(f(x)=\sum\limits_{i=0}^{d-1}a_ix^i\) ,使得存在多项式 \(q(x)\) ,满足 \(f(x)=q(x)\cdot(x+k)+p\) 。且 \(a_i\in[0,k),i\in [0,d)\) 。

\(1\leq p\leq 10^{18},2\leq k\leq 2000\)

Solution

我们假设 \(q(x)=\sum\limits_{i=0}^{d-2}b_ix^i\) ,那么存在 \[\begin{aligned}a_0&=kb_0+p\\a_1&=kb_1+b_0\\&\vdots\\a_{d-2}&=kb_{d-2}+b_{d-3}\\a_{d-1}&=b_{d-2}\end{aligned}\]

逐步从下往上递推,最终我们可以得到 \(p=\sum\limits_{i=0}^{d-1} (-k)^ia_i\) 。显然 \(p_{(10)}=\overline{a_{d-1}\cdots a_1a_0}_{(-k)}\) ,做一遍进制转换就好了。

Code

//It is made by Awson on 2018.2.17
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } LL p, k, a[10005], d; void work() {
read(p), read(k); k = -k;
while (p) {
a[++d] = p%k, p /= k;
if (a[d] < 0) a[d] = -k+a[d], p++;
}
writeln(d);
for (int i = 1; i <= d; i++) write(a[i]), putchar(' ');
}
int main() {
work(); return 0;
}

[Codeforces 933B]A Determined Cleanup的更多相关文章

  1. Codeforces 934D - A Determined Cleanup

    934D - A Determined Cleanup 思路: 找规律,和k进制的求法差不多,答案的奇数位是p%k,偶数位如果p%k!=0,那么答案是k-p%k,否则为0. 代码: #include& ...

  2. Codeforces 934D/933B - A Determined Cleanup

    传送门:http://codeforces.com/contest/934/problem/D 给定两个正整数p(p≥1).k(k>1).多项式f(x)的系数的取值集合为{0,1,2,...,k ...

  3. Codeforces 934.D A Determined Cleanup

    D. A Determined Cleanup time limit per test 1 second memory limit per test 256 megabytes input stand ...

  4. Codeforces Round #462 (Div. 2) D. A Determined Cleanup

    D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...

  5. [codeforces934D]A Determined Cleanup

    [codeforces934D]A Determined Cleanup 试题描述 In order to put away old things and welcome a fresh new ye ...

  6. Codeforces Round #464 (Div. 2) A Determined Cleanup

    A. Love Triangle time limit per test1 second memory limit per test256 megabytes Problem Description ...

  7. 【Codeforces Round #462 (Div. 1) B】A Determined Cleanup

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设\(设f(x)=a_d*x^{d}+a_{d-1}*x^{d-1}+...+a_1*x+a_0\) 用它去除x+k 用多项式除法除 ...

  8. codeforces 462div.2

    A A Compatible Pair standard input/output 1 s, 256 MB    x1916 B A Prosperous Lot standard input/out ...

  9. Codeforces水题集合[14/未完待续]

    Codeforces Round #371 (Div. 2) A. Meeting of Old Friends |B. Filya and Homework A. Meeting of Old Fr ...

随机推荐

  1. 关于hadoop集群下Datanode和Namenode无法访问的解决方案

    HDFS架构 HDFS也是按照Master和Slave的结构,分namenode,secondarynamenode,datanode这几个角色. Namenode:是maseter节点,是大领导.管 ...

  2. 实验MyOD

    实验MyOD 编写MyOD.java 用java MyOD XXX实现Linux下od -tx -tc XXX的功能 提交测试代码和运行结果截图,加上学号水印,提交码云代码链接. 代码如下: (刚开始 ...

  3. TensorFlow实现Softmax Regression识别手写数字中"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败”问题

    出现问题: 在使用TensorFlow实现MNIST手写数字识别时,出现"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应 ...

  4. 201621123050 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 1.事件:用户的操作,例如点击或输入之类的操作 2. ...

  5. ajax 返回Json方法

    public static void sendJsonData(String data) { ActionContext ac = ActionContext.getContext(); HttpSe ...

  6. win7下,使用django运行django-admin.py无法创建网站

    安装django的步骤: 1.安装python,选择默认安装在c盘即可.设置环境变量path,值添加python的安装路径. 2.下载ez_setup.py,下载地址:http://peak.tele ...

  7. Python之旅.第三章.函数4.01/4.02

    一.三元表达式 #普通的判断大小函数def max2(x,y): if x > y: return x else: return yres=max2(10,11)print(res)x=12y= ...

  8. Python-模块使用-Day6

    Python 之路 Day6 - 常用模块学习 本节大纲: 模块介绍time &datetime模块randomossysshutiljson & picleshelvexml处理ya ...

  9. 英语词汇(2)fall down,fall off和fall over

    一.fall down,fall off和fall over都表示"摔倒.跌倒"的意思,但它们各自的含义不同. 1.fall over 落在...之上, 脸朝下跌倒 fall ov ...

  10. 证明二叉查找树所有节点的平均深度为O(logN)

    数据结构与算法分析(c语言描述)第4章 P78 概念一:一棵树所有节点的深度和称为内部路径长 令D(N)为一棵有N节点的树的内部路径长么,即有D(1)=0, 设一棵树的左子树的内部路径长为D(i),则 ...