上一章我们了解了zookeeper到底是什么,这一章重点来看zookeeper当初到底面临什么问题?而zookeeper又是如何解决这些问题的?

实际上zookeeper主要就是解决分布式环境下的一致性问题。那么解决这个问题到底有哪些难点呢?我们一步一步来阐述和推理这个过程。

分布式事务

我们首先考虑一致性的特殊情况,即分布式事务的情况。分布式事务对于一致性的要求是强一致性,因此对于我们后续讨论有一定的借鉴意义。这里我们用到一个经典的例子:bob给smith转账,强一致性的要求一定是需要对外来说bob减钱的同时smith加钱。见文献1(图片也来源于文献1)

单机环境下是这样的

简单讲就是有关bob的减钱和smith的加钱都转同一个库来做,可以采用数据库的事务特性轻松支持。保证bob给smith转账的安全性。

而分布式环境就变这样了

假设应用服务器是A,bob端的数据库是B,smith端的数据是C,那么A做成一个转账,需要B事务成功提交,并且C事务成功提交。然而因为网络的影响,可能出现两种情况

1. 如果bob扣款成功,而网络通知smith失败了,则会出现bob的钱减了,smith的钱没加

2. 如果bob扣款不成功,而smith加钱成功了,则会出现smith钱增加了,但是bob的钱也没减少

2PC

这种不一致的问题困扰着大家。任意一边出错想要回滚另一边都不是简单的数据库回滚的事情( 因为此时已经成功提交),而是需要做业务的逆向操作,而不同业务的逆操作都不同,导致复杂性增加。考虑数据库事务的执行实际上是先将执行操作写入binlog,等到最后通过一个commit指令将binlog的内容一次更新到表中,或者写到一半通过一个rollback指令将binlog中的内容回滚。于是乎,可以想到使用2个阶段来执行这个过程,第一阶段,写入binlog;第二阶段执行commit或者rollback。这就是著名的两阶段提交协议(2PC)。如果仔细考虑,会发现两阶段协议并没有解决问题,只不过降低了出错的概率而已,因为第二阶段同样存在上面的两种情况。注意最终状态是多台机器的状态&&的 结果。以下是两阶段协议的时序图:

1. 考虑prepare阶段的响应(因为请求阶段和执行阶段都可以在最后响应中体现出来),对于分布式环境中,任意时刻考虑3种状态:成功、失败、超时。

  • a.成功。不必处理,执行后续行为commit。
  • b.失败。这是执行阶段出错,执行后续行为rollback。
  • c.超时。这可能是执行阶段太慢,也可能是网络阶段太慢或丢包,但是保守处理,超时可以当做出错。

可以看出,prepare阶段的问题能够完全避免。

2. 考虑commit阶段,同样考虑成功失败超时3种状态。

  • a. 成功。整个事务成功执行
  • b. 失败。提交出错,假设此时前面的B已经提交成功了,则同样面临需要回滚B却无法回滚的问题,因为B已经提交成功了。
  • c. 超时。同上。

还有一种例外情况,即prepare阶段完成后A挂了,则B,C即进入不知所措的状态。

可以看出,在2PC中事务无法做到像单机一样安全,只不过降低了出问题的概率。

3PC

针对如何解决2PC中的例外情况,出现了3阶段提交协议。3阶段的主要改进是把2阶段的prepare再分为canCommit和preCommit两个阶段。

1. 考虑cancommit阶段的响应。

  • a.成功。不必处理,执行后续行为precommit。
  • b.失败。说明无法执行,无须后续提交或回滚行为。
  • c.超时。保守处理,超时可以当做失败。

2. 考虑precommit阶段的响应。

  • a.成功。不必处理,执行后续行为docommit。
  • b.失败。执行阶段出错,执行后续行为rollback。
  • c.超时。执行阶段太慢,也可能是网络阶段太慢或丢包,但是保守处理,超时可以当做出错。

3. 考虑cancommit阶段的响应。

  • a.成功。整个事务成功执行。
  • b.失败。提交出错,假设此时前面的B已经提交成功了,则同样面临无法回滚的问题。
  • c.超时。保守处理,超时可以当做失败。
例外情况,即自cancommit返回成功后的任意阶段A挂掉了,那么BC同样能够知道这个事务正在发生(因为cancommit已经提交了足够信息让BC知晓此事),于是BC可以在无A的情况下继续执行后续的阶段(比如BC投票启动新的A’,并提供A’足够信息)。于是3PC正好解决了2PC的例外情况。
但是3PC仍然存在类似2PC的问题,即最后阶段失败或超时同样有可能出现数据不一致的问题。所以3PC仍然只是降低了发生概率,并没有真正解决问题。
 

XTS

工业界的对分布式事务的应用是如何呢?可以参考某宝的知名分布式框架XTS。

XTS本质上是2PC(实际上如果引入3PC会多2n次网络交互,在量大时反而更加不安全)。XTS引入协调者A的server部分,实际上是一个大集群,以配置的方式接入各种需要分布式事务的业务,集群由专门的团队维护,保证其可用性和性能;而协调者A的client部分则通过发起方调用,prepare阶段时,先通过client将本次事务信息发送到server,落库,然后即时推送prepare请求到B和C,当收到B,C的响应时把他们状态入库,如果正常,则做commit提交;否则会用定时任务去推送未完成的状态直到完成。上文提到的prepare之后协调者A挂了这种情况,在server集群的保证下,几乎很少会发生。而上文提到的所有超时的情况,都可以通过定时任务推送拿到一个确定的状态而不是盲目的选择回滚或者提交。另外由于B和C都是集群,很少会发生多次请求过去无响应的情况。直到最后一种情况就是commit时B成功了C失败了,或者反过来B失败C成功,这种情况成为悬挂事务,最终等待人工来解决,据说每天都有几笔到几十笔。

无疑XTS作为2PC在工业界的应用,是相当了不起的设计,通过各种方式规避了各种可能的不一致性,在性能,效率等方面做到了平衡。

TCC(Try/Confirm/Cancel)

业务补偿类型,其基本思想是对每一个业务操作做一个逆操作,一旦成功了,就做正向业务,一旦失败了就做业务的逆操作。通常在业务逻辑简单并且正逆操作清晰的时候用比较好。

查询补偿

典型的场景是向银行发送了转账请求未得到明确的成功失败返回码,此时先做业务结果的查询,根据结果做相应处理,比如查询结果成功,则置状态为成功,查询结果失败,则做相应的业务补偿,查询结果为未知,则继续查询。

消息事务及消息重试

事务消息及消息重试本质上都是将一些通用的事务交给消息中间件,通过消息中间件来保证消息的最终一致性。

事实上,消息事务解决了这类问题,即本地事务和消息应当有一致性,解决这个一致性比较麻烦,比如消息中间件和业务同时实现XA;或者采用一些更加复杂的方式,比如将消息表与业务表放同库,利用数据库的事务来保证一致性,而消息系统只需要轮训该消息表即可;当然,也有消息的二阶段提交+补偿的方式。消息事务解决了消息发起方,即生产者与消息中间件之间的一致性问题。

try{
//数据库操作
//消息投递
}catch(Exception e){
//回滚
}

消息中间件与消费者之间的一致性问题则需要通过重试+幂等来解决。消息重试中主要考虑重试次数以及重试时间的阈值变化。

参考

zookeeper入门系列 : 分布式事务的更多相关文章

  1. zookeeper 入门系列-理论基础 – zab 协议

    上一章讨论了paxos算法,把paxos推到一个很高的位置.但是,paxos有没有什么问题呢?实际上,paxos还是有其自身的缺点的: 1. 活锁问题.在base-paxos算法中,不存在leader ...

  2. 快速入门系列--WCF--05事务

    最近开始WCF相关知识的学习,虽然实际工作中使用公司自己的一套SOA系统,但微软的一套服务架构还是具有很大的参考意义.除了WCF的一些基础使用,相对比较复杂的内容有分布式的事务和通信的安全等,不过基本 ...

  3. zookeeper入门系列:paxos协议

    上一章讨论了一种强一致性的情况,即需要分布式事务来解决,本章我们来讨论一种最终一致的算法,paxos算法. paxos算法是由大牛lamport发明的,关于paxos算法有很多趣事.比如lamport ...

  4. Springboot入门之分布式事务管理

    springboot默认集成事务,只主要在方法上加上@Transactional即可. 分布式事务一种情况是针对多数据源,解决方案这里使用springboot+jta+atomikos来解决 一.po ...

  5. zookeeper入门系列:概述

    zookeeper可谓是目前使用最广泛的分布式组件了.其功能和职责单一,但却非常重要. 在现今这个年代,介绍zookeeper的书和文章可谓多如牛毛,本人不才,试图通过自己的理解来介绍zookeepe ...

  6. zookeeper入门系列讲解

    zookeeper可谓是目前使用最广泛的分布式组件了.其功能和职责单一,但却非常重要.    在现今这个年代,介绍zookeeper的书和文章可谓多如牛毛,本人不才,试图通过自己的理解来介绍zooke ...

  7. Zookeeper概念学习系列之分布式事务

    不多说,直接上干货! 初学者来说,肯定会有这么一个疑问.为什么会在zookeeper里牵扯到分布式事务? zookeeper到底是什么? zookeeper实际上是yahoo开发的,用于分布式中一致性 ...

  8. zookeeper编程入门系列之zookeeper实现分布式进程监控和分布式共享锁(图文详解)

    本博文的主要内容有 一.zookeeper编程入门系列之利用zookeeper的临时节点的特性来监控程序是否还在运行   二.zookeeper编程入门系列之zookeeper实现分布式进程监控 三. ...

  9. Zookeeper系列二:分布式架构详解、分布式技术详解、分布式事务

    一.分布式架构详解 1.分布式发展历程 1.1 单点集中式 特点:App.DB.FileServer都部署在一台机器上.并且访问请求量较少 1.2  应用服务和数据服务拆分  特点:App.DB.Fi ...

随机推荐

  1. 伯克利推出世界最快的KVS数据库Anna:秒杀Redis和Cassandra

    天下武功,唯快不破. 伯克利 RISE 实验室推出了最新的键值存储数据库 Anna,提供了惊人的存取速度.超强的伸缩性和史无前例的一致性保证.Jeff Dean 说,当一个系统增长到十倍规模时,就需要 ...

  2. c++中回调函数和函数指针的使用

    #include "stdafx.h" #include <iostream> //#include <string> using namespace st ...

  3. 本地mysql无法连接原来是这里有问题啊。。。。。。

    1.怎么解决localhost无法链接本地mysql数据库问题_百度经验http://jingyan.baidu.com/article/d45ad14896d1cd69542b805c.html 2 ...

  4. kafka概念使用简介注意点

    使用场景 大数据量.低并发.高可用.订阅消费场景 概念理解 分区个数与消费者个数 分区个数 = 消费者个数 :最合适状态 分区个数 > 消费者个数 :某些消费者要承担更多的分区数据消费 分区个数 ...

  5. canvas实现将文字变成颗粒

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  6. 边做边学入门微信小程序之仿豆瓣评分

    微信小程序由于适用性强.逻辑简要.开发迅速的特性,叠加具有海量活跃用户的腾讯公司背景,逐渐成为了轻量级单一功能应用场景的较佳承载方式,诸如电影购票.外卖点餐.移动商城.生活服务等场景服务提供商迅速切入 ...

  7. 笔记:Jersey REST 传输格式-XML

    XML类型是使用最广泛的数据类型,Jersey 对XML类型的数据处理,支持Java领域的两大标准,即JAXP(Java API for XML Processing,JSR-206)和JAXB(Ja ...

  8. 大数据 --> 一致性Hash算法

    一致性Hash算法 一致性Hash算法(Consistent Hash)

  9. OpenGL学习笔记:第一个OpenGL程序

    OpenGL环境搭建参考博客:VS2015下OpenGL库的配置. #include<GL\glew.h> #include<GLTools.h> #include<GL ...

  10. 工作中MySql的了解到的小技巧

    工作中MySql的小技巧 1. 跑脚本时,经常遇到有则更新无插入的 逻辑操作:通常情况下,来一波if()判断然后选择 更新还是插入,前两天逛论坛时发现有人在比较REPLACE INTO 和 INSET ...