select, poll, epoll都是Linux上的IO多路复用机制.知其然知其所以然,为了更好地理解其底层实现,这几天我阅读了这三个系统调用的源码.

  以下源代码摘自Linux4.4.0内核.

  预备知识

  在了解IO多路复用技术之前,首先需要了解Linux内核的3个方面.

  1.等待队列waitqueue

  等待队列(@ include/linux/wait.h)的队列头(wait_queue_head_t)往往是资源生产者,队列成员(wait_queue_t)往往是资源消费者.当队列头的资源ready后,内核会逐个执行每个队列成员指定的回调函数,来通知它们该资源已经ready了.

  2.内核的poll机制

  被poll的fd,必须在实现上支持内核的poll技术,比如fd是某个字符设备,或者是一个socket,它必须实现file_operation中的poll操作,这个操作会给该fd分配一个等待队列头.主动poll该fd的进程必须分配一个等待队列成员,并将其添加到该fd的等待队列中去,同时指定该资源ready时的回调函数.拿socket举例,它必须实现一个poll操作,该操作是由发起轮询者(即监听它的进程)主动调用的.这个poll操作必须调用poll_wait(),后者会将发起轮询者作为等待队列成员添加到该socket的等待队列中.当该socket发生状态改变时,就会通过队列头逐个通知所有监听它的进程.

  3.epollfd

  epollfd其实质就是一个fd.

  select

  1.源码分析

// @ fs/select.c
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval __user *, tvp)
{
struct timespec end_time, *to = NULL;
struct timeval tv;
int ret;
if (tvp) { // 如果timeout值不为NULL
if (copy_from_user(&tv, tvp, sizeof(tv))) // 则把超时值从用户空间拷贝到内核空间.
return -EFAULT;
to = &end_time;
// 计算timespec格式的未来timeout时间.
if (poll_select_set_timeout(to,
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
return -EINVAL;
}
ret = core_sys_select(n, inp, outp, exp, to); // 关键函数
// poll_select_copy_remaining函数的作用是:
// 如果有超时值,则把距离超时时间所剩的时间,从内核空间拷贝到用户空间.
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
return ret;
}
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec *end_time)
{
fd_set_bits fds;
/**
@ include/linux/poll.h
typedef struct {
unsigned long *in, *out, *ex;
unsigned long *res_in, *res_out, *res_ex;
} fd_set_bits;
**/
// 该结构体内部定义的都是指针,指向描述符集合.
void *bits;
int ret, max_fds;
unsigned int size;
struct fdtable *fdt;
/**
@ include/linux/fdtable.h
struct fdtable {
unsigned int max_fds;
struct file __rcu **fd; // current fd array
unsigned long *close_on_exec;
unsigned long *open_fds;
unsigned long *full_fds_bits;
struct rcu_head rcu;
};
**/
/* Allocate small arguments on the stack to save memory and be faster */
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
/**
@ include/linux/poll.h
#define FRONTEND_STACK_ALLOC 256
#define SELECT_STACK_ALLOC FRONTEND_STACK_ALLOC
**/
// 256 / 8 = 32
// 预先在stack中分配小部分的空间,以节省内存且更加快速
ret = -EINVAL;
if (n < 0)
goto out_nofds;
/* max_fds can increase, so grab it once to avoid race */
rcu_read_lock();
fdt = files_fdtable(current->files); // 获取当前进程的文件描述符表
max_fds = fdt->max_fds;
rcu_read_unlock();
if (n > max_fds) // 如果传入的n大于当前进程最大的文件描述符,则修改之.
n = max_fds;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
/**
需要分配6个bitmap,
用户传入的in, out, ex,
以及返回给用户的res_in, res_out, res_ex.
**/
size = FDS_BYTES(n); // 以一个描述符占一个bit来计算,求出传入的描述符需要多少个byte(以long为单位分配byte)。
bits = stack_fds;
if (size > sizeof(stack_fds) / 6) {
// 因为一共有6个bitmap, 所以除以6,求得每个bitmap所占的byte个数,用以和size比较。
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM;
bits = kmalloc(6 * size, GFP_KERNEL); // 如果预先在stack分配的空间太小,则在heap上申请内存。
if (!bits)
goto out_nofds;
}
// fds结构体的妙用
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
/**
@ include/linux/poll.h
static inline
int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
{
nr = FDS_BYTES(nr);
if (ufdset)
return copy_from_user(fdset, ufdset, nr) ? -EFAULT : 0;
memset(fdset, 0, nr);
return 0;
}
get_fd_set的作用是调用copy_from_user函数,
把用户传入的fd_set从用户空间拷贝到内核空间。
**/
if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
// 对返回给用户的fd_set初始化为零
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, end_time); // 关键函数,完成主要的工作。
if (ret < 0) // 出错
goto out;
if (!ret) { // 无文件设备就绪,但超时或有未决信号。
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
// 把结果集合拷贝到用户空间.
if (set_fd_set(n, inp, fds.res_in) ||
set_fd_set(n, outp, fds.res_out) ||
set_fd_set(n, exp, fds.res_ex))
ret = -EFAULT;
out:
if (bits != stack_fds) // 如果申请了heap上的内存,则释放之.
kfree(bits);
out_nofds:
return ret;
}
int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
ktime_t expire, *to = NULL;
struct poll_wqueues table;
/**
@ inclue/linux/poll.h
struct poll_wqueues {
poll_table pt;
struct poll_table_page *table;
struct task_struct *polling_task;
int triggered;
int error;
int inline_index;
struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES];
};
**/
poll_table *wait;
/**
@ inclue/linux/poll.h
typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *);
typedef struct poll_table_struct {
poll_queue_proc _qproc;
unsigned long _key;
} poll_table;
**/
int retval, i, timed_out = 0;
unsigned long slack = 0;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0; // TODO
unsigned long busy_end = 0;
rcu_read_lock(); // TODO
retval = max_select_fd(n, fds); // 检查fds中fd的有效性(即要求打开),并获得当前最大的fd.
rcu_read_unlock();
if (retval < 0)
return retval;
n = retval;
// 初始化poll_wqueues对象table,
// 包括初始化poll_wqueues.poll_table._qproc函数指针为__pollwait.
poll_initwait(&table);
/**
@ fs/select.c
void poll_initwait(struct poll_wqueues *pwq)
{
init_poll_funcptr(&pwq->pt, __pollwait);
pwq->polling_task = current;
pwq->triggered = 0;
pwq->error = 0;
pwq->table = NULL;
pwq->inline_index = 0;
}
**/
wait = &table.pt;
// 如果用户传入的timeout不为NULL,但设定的时间为0,
// 则设置poll_table._qproc函数指针为NULL,
// 并设置timed_out = 1.
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
wait->_qproc = NULL;
timed_out = 1;
}
// 如果用户传入的timeout不为NULL,且设定的timeout时间不为0,
// 则转换timeout时间.
if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time);
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
// 将in, out, exception进行位或运算,得到all_bits.
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
// 如果这BITS_PER_LONG个描述符不需要被监听,
// 则continue到下一个32个描述符中的循环.
if (all_bits == 0) {
i += BITS_PER_LONG;
continue;
}
// 本次这BITS_PER_LONG个描述符中有需要监听的.
for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
struct fd f;
if (i >= n) // 检测i是否超出了待监听的最大描述符.
break;
// 每次循环后bit左移一位,用来跳过不需要被监听的描述符.
if (!(bit & all_bits))
continue;
f = fdget(i); // 获取file结构,并增加其引用计数.
if (f.file) {
const struct file_operations *f_op;
f_op = f.file->f_op;
mask = DEFAULT_POLLMASK;
if (f_op->poll) {
wait_key_set(wait, in, out, // 设置当前描述符待监听的事件掩码.
bit, busy_flag);
mask = (*f_op->poll)(f.file, wait);
// f_op->poll函数执行如下:
// 1, 调用poll_wait函数(在include/linux/poll.h);
// 2, 检测当前描述符所对应的文件设备的状态,并返回状态掩码mask.
// poll_wait函数的定义如下:
/**
@ include/linux/poll.h
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
if (p && p->_qproc && wait_address)
p->_qproc(filp, wait_address, p);
}
**/
// 而由上文的poll_initwait函数可知,p->_qproc指向__pollwait函数.
// __pollwait函数的定义如下:
/**
@ fs/select.c
// __pollwait函数的作用是把当前进程添加到当前文件设备的等待队列中.
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p)
{
struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
struct poll_table_entry *entry = poll_get_entry(pwq);
if (!entry)
return;
entry->filp = get_file(filp);
entry->wait_address = wait_address;
entry->key = p->_key;
init_waitqueue_func_entry(&entry->wait, pollwake);
entry->wait.private = pwq;
add_wait_queue(wait_address, &entry->wait);
}
**/
}
fdput(f); // 释放file结构指针,实质是减少其引用计数.
// mask是执行f_op->poll函数后所返回的文件设备状态掩码.
if ((mask & POLLIN_SET) && (in & bit)) {
res_in |= bit; // 描述符对应的文件设备可读
retval++;
wait->_qproc = NULL; // 避免重复执行__pollwait函数
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out |= bit; // 描述符对应的文件设备可写
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex |= bit; // 描述符对应的文件设备发生error
retval++;
wait->_qproc = NULL;
}
/* got something, stop busy polling */
if (retval) {
can_busy_loop = false;
busy_flag = 0;
/*
* only remember a returned
* POLL_BUSY_LOOP if we asked for it
*/
} else if (busy_flag & mask)
can_busy_loop = true;
}
}
// 根据f_op->poll函数的结果,设置rinp, routp, rexp
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
cond_resched();
}
wait->_qproc = NULL; // 避免重复执行__pollwait函数
// 如果有文件设备就绪,或超时,或有未决信号;
// 亦或者发生错误,
// 则退出大循环.
if (retval || timed_out || signal_pending(current))
break;
if (table.error) {
retval = table.error;
break;
}
/* only if found POLL_BUSY_LOOP sockets && not out of time */
if (can_busy_loop && !need_resched()) { // TODO
if (!busy_end) {
busy_end = busy_loop_end_time();
continue;
}
if (!busy_loop_timeout(busy_end))
continue;
}
busy_flag = 0;
/*
* If this is the first loop and we have a timeout
* given, then we convert to ktime_t and set the to
* pointer to the expiry value.
*/
if (end_time && !to) {
expire = timespec_to_ktime(*end_time); // 转换timeout时间.
to = &expire;
}
// 第一次循环时,当前用户进程在这里进入睡眠.
// 超时,poll_schedule_timeout()返回0;被唤醒时返回-EINTR.
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
}
// 把当前进程从所有文件的等待队列中删掉,并回收内存.
poll_freewait(&table);
// 返回就绪的文件描述符的个数.
return retval;
}

  2.实现过程

  一. 如果用户传入的超时值不为NULL,则把用户空间的timeout对象拷贝到内 核空间,并计算timespec格式的超时时间.
  二. 调用core_sys_select函数.过程如下:

  1. 根据传入的maxfds值,计算出保存所有文件描述符需要多少字节(1个字节占1bit),再根据字节数判断是在栈上还是堆上分配内存(如果字节数太大,则在堆上分配).一共需要分配6个bitmap,用户传入的in,out,ex,以及返回给用户的res_in,res_out,res_ex.
  2. 将3个用户传入的fdset(in, out, ex)从用户空间拷贝到内核空间,并将3个返回给用户的fdset(res_in, res_out, res_ex)初始化为0.
  3. 调用do_select函数.过程如下:
    3a. 检查传入的fds中fd的有效性.
    3b. 调用poll_initwait函数,以初始化poll_wqueues对象table,其中初始化poll_wqueues.poll_table._qproc函数指针为__pollwait.
    3c. 如果传入的超时值不为空,但设定的时间为0,则设置poll_table._qproc函数指针为NULL.
    3d. 进入大循环.
    3e.
    将in, out,
    ex进行位或运算,得到all_bits.然后遍历all_bits中bit为1的文件描述符,根据当前进程的文件描述符表,获取与当前描述符对应的file结构指针f,并设  置当前描述符待监听的事件掩码,调用f_op->poll函数,该函数会把当前用户进程添加到当前描述符的等待队列中,并获得返回值mask.根据mask设置相应的  返回fdset,执行retval++,并设置wait->_qproc为NULL.
    3f. 遍历完所有的文件描述符后,设置wait->_qproc为NULL,并检查是否有文件设备就绪,或超时,或有未决信号,或发生错误,是则退出大循环,执行第8步.
    3g. 在第一次循环后,如果设置了超时值,用户进程会调用poll_schedule_timeout进入睡眠.
    3h. 最终,调用poll_freewait函数,把当前进程从所有文件的等待队列中删除,回收内存.并返回retval值.
  4. 把res_in, res_out, res_ex从内核空间拷贝到用户空间.并返回ret.

三. 如果设有超时值,则把剩余的超时时间从内核空间拷贝到用户空间.

  3.小结

  从上述源代码的分析可见,select的低效体现在两个方面:

  1. 内存复制开销,每次调用select,都要把文件描述符集合从用户空间拷贝到内核空间,又从内核空间拷贝到用户空间.
  2. 遍历开销,每次调用select,都要在内核中遍历所有传入的文件描述符.

  另外select系统调用的第一个参数maxfdp1,其大小被限制在1024内(即FD_SETSIZE),可监听的文件数量有限,这也是select低效的原因.

  poll

  poll的实现与select大致相同,故不做赘述.区别有两点:

  1. 文件描述符集合的结构不同,poll使用的是pollfd,而select使用的是fd_set.
  2. poll没有限制可监听的文件数量.

  epoll

  1.源码分析

// @ fs/eventpoll.c
/*
* This structure is stored inside the "private_data" member of the file
* structure and represents the main data structure for the eventpoll
* interface.
*/
// 每创建一个epollfd,内核就会分配一个eventpoll与之对应,可以理解成内核态的epollfd.
struct eventpoll {
/* Protect the access to this structure */
spinlock_t lock;
/*
* This mutex is used to ensure that files are not removed
* while epoll is using them. This is held during the event
* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.
*/
/**
添加,修改或删除监听fd的时候,以及epoll_wait返回,向用户空间传递数据时,都会持有这个互斥锁.
因此,在用户空间中执行epoll相关操作是线程安全的,内核已经做了保护.
**/
struct mutex mtx;
/* Wait queue used by sys_epoll_wait() */
/**
等待队列头部.
当在该等待队列中的进程调用epoll_wait()时,会进入睡眠.
**/
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
/**
用于epollfd被f_op->poll()的时候
**/
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
/**
所有已经ready的epitem被存放在这个链表里
**/
struct list_head rdllist;
/* RB tree root used to store monitored fd structs */
/**
所有待监听的epitem被存放在这个红黑树里
**/
struct rb_root rbr;
/*
* This is a single linked list that chains all the "struct epitem" that
* happened while transferring ready events to userspace w/out
* holding ->lock.
*/
/**
当event转移到用户空间时,这个单链表存放着所有struct epitem
**/
struct epitem *ovflist;
/* wakeup_source used when ep_scan_ready_list is running */
struct wakeup_source *ws; // TODO
/* The user that created the eventpoll descriptor */
/**
这里存放了一些用户变量,比如fd监听数量的最大值等
**/
struct user_struct *user;
struct file *file;
/* used to optimize loop detection check */ // TODO
int visited;
struct list_head visited_list_link;
};
/*
* Each file descriptor added to the eventpoll interface will
* have an entry of this type linked to the "rbr" RB tree.
* Avoid increasing the size of this struct, there can be many thousands
* of these on a server and we do not want this to take another cache line.
*/
// epitem表示一个被监听的fd
struct epitem {
union {
/* RB tree node links this structure to the eventpoll RB tree */
/**
红黑树结点,当使用epoll_ctl()将一批fd加入到某个epollfd时,内核会分配一批epitem与fd一一对应,
并且以红黑树的形式来组织它们,tree的root被存放在struct eventpoll中.
**/
struct rb_node rbn;
/* Used to free the struct epitem */
struct rcu_head rcu; // TODO
};
/* List header used to link this structure to the eventpoll ready list */
/**
链表结点,所有已经ready的epitem都会被存放在eventpoll的rdllist链表中.
**/
struct list_head rdllink;
/*
* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.
*/
struct epitem *next; // 用于eventpoll的ovflist
/* The file descriptor information this item refers to */
/**
epitem对应的fd和struct file
**/
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
int nwait; // 当前epitem被加入到多少个等待队列中
/* List containing poll wait queues */
struct list_head pwqlist;
/* The "container" of this item */
/**
当前epitem属于那个eventpoll
**/
struct eventpoll *ep;
/* List header used to link this item to the "struct file" items list */
struct list_head fllink;
/* wakeup_source used when EPOLLWAKEUP is set */
struct wakeup_source __rcu *ws;
/* The structure that describe the interested events and the source fd */
/**
当前epitem关心哪些event,这个数据是由执行epoll_ctl时从用户空间传递过来的
**/
struct epoll_event event;
};
struct epoll_filefd {
struct file *file;
int fd;
} __packed;
/* Wait structure used by the poll hooks */
struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head llink;
/* The "base" pointer is set to the container "struct epitem" */
struct epitem *base;
/*
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_t wait;
/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;
};
/* Used by the ep_send_events() function as callback private data */
struct ep_send_events_data {
int maxevents;
struct epoll_event __user *events;
};
/**
调用epoll_create()的实质,就是调用epoll_create1().
**/
SYSCALL_DEFINE1(epoll_create, int, size)
{
if (size <= 0)
return -EINVAL;
return sys_epoll_create1(0);
}
/*
* Open an eventpoll file descriptor.
*/
SYSCALL_DEFINE1(epoll_create1, int, flags)
{
int error, fd;
struct eventpoll *ep = NULL;
struct file *file;
/* Check the EPOLL_* constant for consistency. */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
/**
对于epoll来说,目前唯一有效的FLAG是CLOSEXEC
**/
if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*
* Create the internal data structure ("struct eventpoll").
*/
/**
分配一个struct eventpoll,ep_alloc()的具体分析在下面
**/
error = ep_alloc(&ep);
if (error < 0)
return error;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); // TODO
if (fd < 0) {
error = fd;
goto out_free_ep;
}
/**
创建一个匿名fd.
epollfd本身并不存在一个真正的文件与之对应,所以内核需要创建一个"虚拟"的文件,并为之分配
真正的struct file结构,并且具有真正的fd.
**/
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd;
out_free_fd:
put_unused_fd(fd);
out_free_ep:
ep_free(ep);
return error;
}
/**
分配一个eventpoll结构
**/
static int ep_alloc(struct eventpoll **pep)
{
int error;
struct user_struct *user;
struct eventpoll *ep;
/**
获取当前用户的一些信息,比如最大监听fd数目
**/
user = get_current_user();
error = -ENOMEM;
ep = kzalloc(sizeof(*ep), GFP_KERNEL); // 话说分配eventpoll对象是使用slab还是用buddy呢?TODO
if (unlikely(!ep))
goto free_uid;
/**
初始化
**/
spin_lock_init(&ep->lock);
mutex_init(&ep->mtx);
init_waitqueue_head(&ep->wq);
init_waitqueue_head(&ep->poll_wait);
INIT_LIST_HEAD(&ep->rdllist);
ep->rbr = RB_ROOT;
ep->ovflist = EP_UNACTIVE_PTR;
ep->user = user;
*pep = ep;
return 0;
free_uid:
free_uid(user);
return error;
}
/*
* The following function implements the controller interface for
* the eventpoll file that enables the insertion/removal/change of
* file descriptors inside the interest set.
*/
/**
调用epool_ctl来添加要监听的fd.
参数说明:
epfd,即epollfd
op,操作,ADD,MOD,DEL
fd,需要监听的文件描述符
event,关心的events
**/
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
struct epoll_event __user *, event)
{
int error;
int full_check = 0;
struct fd f, tf;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
struct eventpoll *tep = NULL;
error = -EFAULT;
/**
错误处理以及
将event从用户空间拷贝到内核空间.
**/
if (ep_op_has_event(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto error_return;
error = -EBADF;
/**
获取epollfd的file结构,该结构在epoll_create1()中,由函数anon_inode_getfile()分配
**/
f = fdget(epfd);
if (!f.file)
goto error_return;
/* Get the "struct file *" for the target file */
/**
获取待监听的fd的file结构
**/
tf = fdget(fd);
if (!tf.file)
goto error_fput;
/* The target file descriptor must support poll */
error = -EPERM;
/**
待监听的文件一定要支持poll.
话说什么情况下文件不支持poll呢?TODO
**/
if (!tf.file->f_op->poll)
goto error_tgt_fput;
/* Check if EPOLLWAKEUP is allowed */
if (ep_op_has_event(op))
ep_take_care_of_epollwakeup(&epds);
/*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
/**
epollfd不能监听自己
**/
if (f.file == tf.file || !is_file_epoll(f.file))
goto error_tgt_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
/**
获取eventpoll结构,来自于epoll_create1()的分配
**/
ep = f.file->private_data;
/*
* When we insert an epoll file descriptor, inside another epoll file
* descriptor, there is the change of creating closed loops, which are
* better be handled here, than in more critical paths. While we are
* checking for loops we also determine the list of files reachable
* and hang them on the tfile_check_list, so we can check that we
* haven't created too many possible wakeup paths.
*
* We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
* the epoll file descriptor is attaching directly to a wakeup source,
* unless the epoll file descriptor is nested. The purpose of taking the
* 'epmutex' on add is to prevent complex toplogies such as loops and
* deep wakeup paths from forming in parallel through multiple
* EPOLL_CTL_ADD operations.
*/
/**
以下操作可能会修改数据结构内容,锁
**/
// TODO
mutex_lock_nested(&ep->mtx, 0);
if (op == EPOLL_CTL_ADD) {
if (!list_empty(&f.file->f_ep_links) ||
is_file_epoll(tf.file)) {
full_check = 1;
mutex_unlock(&ep->mtx);
mutex_lock(&epmutex);
if (is_file_epoll(tf.file)) {
error = -ELOOP;
if (ep_loop_check(ep, tf.file) != 0) {
clear_tfile_check_list();
goto error_tgt_fput;
}
} else
list_add(&tf.file->f_tfile_llink,
&tfile_check_list);
mutex_lock_nested(&ep->mtx, 0);
if (is_file_epoll(tf.file)) {
tep = tf.file->private_data;
mutex_lock_nested(&tep->mtx, 1);
}
}
}
/*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
/**
对于每一个监听的fd,内核都有分配一个epitem结构,并且不允许重复分配,所以要查找该fd是否
已经存在.
ep_find()即在红黑树中查找,时间复杂度为O(lgN).
**/
epi = ep_find(ep, tf.file, fd);
error = -EINVAL;
switch (op) {
/**
首先关心添加
**/
case EPOLL_CTL_ADD:
if (!epi) {
/**
如果ep_find()没有找到相关的epitem,证明是第一次插入.
在此可以看到,内核总会关心POLLERR和POLLHUP.
**/
epds.events |= POLLERR | POLLHUP;
/**
红黑树插入,ep_insert()的具体分析在下面
**/
error = ep_insert(ep, &epds, tf.file, fd, full_check);
} else
/**
如果找到了,则是重复添加
**/
error = -EEXIST;
if (full_check) // TODO
clear_tfile_check_list();
break;
case EPOLL_CTL_DEL:
/**
删除
**/
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
case EPOLL_CTL_MOD:
/**
修改
**/
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
if (tep != NULL)
mutex_unlock(&tep->mtx);
mutex_unlock(&ep->mtx); // 解锁
error_tgt_fput:
if (full_check)
mutex_unlock(&epmutex);
fdput(tf);
error_fput:
fdput(f);
error_return:
return error;
}
/*
* Must be called with "mtx" held.
*/
/**
ep_insert()在epoll_ctl()中被调用,其工作是往epollfd的红黑树中添加一个待监听fd.
**/
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd, int full_check)
{
int error, revents, pwake = 0;
unsigned long flags;
long user_watches;
struct epitem *epi;
struct ep_pqueue epq;
/**
struct ep_pqueue的定义如下:
@ fs/eventpoll.c
// Wrapper struct used by poll queueing
struct ep_pqueue {
poll_table pt;
struct epitem *epi;
};
**/
/**
查看是否达到当前用户的最大监听数
**/
user_watches = atomic_long_read(&ep->user->epoll_watches);
if (unlikely(user_watches >= max_user_watches))
return -ENOSPC;
/**
从slab中分配一个epitem
**/
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;
/* Item initialization follow here ... */
/**
相关数据成员的初始化
**/
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
/**
在该epitem中保存待监听的fd和它的file结构.
**/
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;
epi->nwait = 0;
epi->next = EP_UNACTIVE_PTR;
if (epi->event.events & EPOLLWAKEUP) {
error = ep_create_wakeup_source(epi);
if (error)
goto error_create_wakeup_source;
} else {
RCU_INIT_POINTER(epi->ws, NULL);
}
/* Initialize the poll table using the queue callback */
epq.epi = epi;
/**
初始化一个poll_table,
其实质是指定调用poll_wait()时(不是epoll_wait)的回调函数,以及我们关心哪些event.
ep_ptable_queue_proc()就是我们的回调函数,初值是所有event都关心.
ep_ptable_queue_proc()的具体分析在下面.
**/
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function. Note that after
* this operation completes, the poll callback can start hitting
* the new item.
*/
revents = ep_item_poll(epi, &epq.pt);
/**
ep_item_poll()的定义如下:
@ fs/eventpoll.c
static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
{
pt->_key = epi->event.events;
return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
}
**/
/**
f_op->poll()一般来说只是个wrapper,它会调用真正的poll实现.
拿UDP的socket来举例,调用流程如下:
f_op->poll(),sock_poll(),udp_poll(),datagram_poll(),sock_poll_wait(),
最后调用到上面指定的ep_ptable_queue_proc().
完成这一步,该epitem就跟这个socket关联起来了,当后者有状态变化时,会通过ep_poll_callback()
来通知.
所以,f_op->poll()做了两件事情:
1.将该epitem和这个待监听的fd关联起来;
2.查询这个待监听的fd是否已经有event已经ready了,有的话就将event返回.
**/
/*
* We have to check if something went wrong during the poll wait queue
* install process. Namely an allocation for a wait queue failed due
* high memory pressure.
*/
error = -ENOMEM;
if (epi->nwait < 0)
goto error_unregister;
/* Add the current item to the list of active epoll hook for this file */
/**
把每个文件和对应的epitem关联起来
**/
spin_lock(&tfile->f_lock);
list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
spin_unlock(&tfile->f_lock);
/*
* Add the current item to the RB tree. All RB tree operations are
* protected by "mtx", and ep_insert() is called with "mtx" held.
*/
/**
将epitem插入到eventpoll的红黑树中
**/
ep_rbtree_insert(ep, epi);
/* now check if we've created too many backpaths */
error = -EINVAL;
if (full_check && reverse_path_check())
goto error_remove_epi;
/* We have to drop the new item inside our item list to keep track of it */
spin_lock_irqsave(&ep->lock, flags); // TODO
/* If the file is already "ready" we drop it inside the ready list */
/**
在这里,如果待监听的fd已经有事件发生,就去处理一下
**/
if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
/**
将当前的epitem加入到ready list中去
**/
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake(epi);
/* Notify waiting tasks that events are available */
/**
哪个进程在调用epoll_wait(),就唤醒它
**/
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
/**
先不通知对eventpoll进行poll的进程
**/
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
atomic_long_inc(&ep->user->epoll_watches);
/* We have to call this outside the lock */
if (pwake)
/**
安全地通知对eventpoll进行poll的进程
**/
ep_poll_safewake(&ep->poll_wait);
return 0;
error_remove_epi:
spin_lock(&tfile->f_lock);
list_del_rcu(&epi->fllink);
spin_unlock(&tfile->f_lock);
rb_erase(&epi->rbn, &ep->rbr);
error_unregister:
ep_unregister_pollwait(ep, epi);
/*
* We need to do this because an event could have been arrived on some
* allocated wait queue. Note that we don't care about the ep->ovflist
* list, since that is used/cleaned only inside a section bound by "mtx".
* And ep_insert() is called with "mtx" held.
*/
spin_lock_irqsave(&ep->lock, flags);
if (ep_is_linked(&epi->rdllink))
list_del_init(&epi->rdllink);
spin_unlock_irqrestore(&ep->lock, flags);
wakeup_source_unregister(ep_wakeup_source(epi));
error_create_wakeup_source:
kmem_cache_free(epi_cache, epi);
return error;
}
/*
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
/**
该函数在调用f_op->poll()时被调用.
其作用是当epoll主动poll某个待监听fd时,将epitem和该fd关联起来.
关联的方法是使用等待队列.
**/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
/**
@ fs/eventpoll.c
// Wait structure used by the poll hooks
struct eppoll_entry {
// List header used to link this structure to the "struct epitem"
struct list_head llink;
// The "base" pointer is set to the container "struct epitem"
struct epitem *base;
// Wait queue item that will be linked to the target file wait
// queue head.
wait_queue_t wait;
// The wait queue head that linked the "wait" wait queue item
wait_queue_head_t *whead;
};
**/
if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
/**
初始化等待队列,指定ep_poll_callback()为唤醒时的回调函数.
当监听的fd发生状态改变时,即队列头被唤醒时,指定的回调函数会被调用.
**/
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); // ep_poll_callback()的具体分析在下面
pwq->whead = whead;
pwq->base = epi;
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
/*
* This is the callback that is passed to the wait queue wakeup
* mechanism. It is called by the stored file descriptors when they
* have events to report.
*/
/**
这是一个关键的回调函数.
当被监听的fd发生状态改变时,该函数会被调用.
参数key指向events.
**/
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait); // 从等待队列获取epitem
struct eventpoll *ep = epi->ep;
spin_lock_irqsave(&ep->lock, flags);
/*
* If the event mask does not contain any poll(2) event, we consider the
* descriptor to be disabled. This condition is likely the effect of the
* EPOLLONESHOT bit that disables the descriptor when an event is received,
* until the next EPOLL_CTL_MOD will be issued.
*/
if (!(epi->event.events & ~EP_PRIVATE_BITS))
goto out_unlock;
/*
* Check the events coming with the callback. At this stage, not
* every device reports the events in the "key" parameter of the
* callback. We need to be able to handle both cases here, hence the
* test for "key" != NULL before the event match test.
*/
/**
没有我们关心的event
**/
if (key && !((unsigned long) key & epi->event.events))
goto out_unlock;
/*
* If we are transferring events to userspace, we can hold no locks
* (because we're accessing user memory, and because of linux f_op->poll()
* semantics). All the events that happen during that period of time are
* chained in ep->ovflist and requeued later on.
*/
/**
如果该函数被调用时,epoll_wait()已经返回了,
即此时应用程序已经在循环中获取events了,
这种情况下,内核将此刻发生状态改变的epitem用一个单独的链表保存起来,并且在下一次epoll_wait()
时返回给用户.这个单独的链表就是ovflist.
*/
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
if (epi->next == EP_UNACTIVE_PTR) {
epi->next = ep->ovflist;
ep->ovflist = epi;
if (epi->ws) {
/*
* Activate ep->ws since epi->ws may get
* deactivated at any time.
*/
__pm_stay_awake(ep->ws);
}
}
goto out_unlock;
}
/* If this file is already in the ready list we exit soon */
/**
将当前epitem添加到ready list中
**/
if (!ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake_rcu(epi);
}
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
/**
唤醒调用epoll_wait()的进程
**/
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
/**
先不通知对eventpoll进行poll的进程
**/
if (waitqueue_active(&ep->poll_wait))
pwake++;
out_unlock:
spin_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
/**
安全地通知对eventpoll进行poll的进程
**/
ep_poll_safewake(&ep->poll_wait);
if ((unsigned long)key & POLLFREE) {
/*
* If we race with ep_remove_wait_queue() it can miss
* ->whead = NULL and do another remove_wait_queue() after
* us, so we can't use __remove_wait_queue().
*/
list_del_init(&wait->task_list);
/*
* ->whead != NULL protects us from the race with ep_free()
* or ep_remove(), ep_remove_wait_queue() takes whead->lock
* held by the caller. Once we nullify it, nothing protects
* ep/epi or even wait.
*/
smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
}
return 1;
}
/*
* Implement the event wait interface for the eventpoll file. It is the kernel
* part of the user space epoll_wait(2).
*/
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
int, maxevents, int, timeout)
{
int error;
struct fd f;
struct eventpoll *ep;
/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
/**
内核要验证这一段用户空间的内存是不是有效的,可写的.
**/
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
return -EFAULT;
/* Get the "struct file *" for the eventpoll file */
/**
获取epollfd的file结构
**/
f = fdget(epfd);
if (!f.file)
return -EBADF;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
/**
检查它是不是一个真正的epollfd
**/
if (!is_file_epoll(f.file))
goto error_fput;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
/**
获取eventpoll结构
**/
ep = f.file->private_data;
/* Time to fish for events ... */
/**
睡眠,等待事件到来.
ep_poll()的具体分析在下面.
**/
error = ep_poll(ep, events, maxevents, timeout);
error_fput:
fdput(f);
return error;
}
/**
* ep_poll - Retrieves ready events, and delivers them to the caller supplied
* event buffer.
*
* @ep: Pointer to the eventpoll context.
* @events: Pointer to the userspace buffer where the ready events should be
* stored.
* @maxevents: Size (in terms of number of events) of the caller event buffer.
* @timeout: Maximum timeout for the ready events fetch operation, in
* milliseconds. If the @timeout is zero, the function will not block,
* while if the @timeout is less than zero, the function will block
* until at least one event has been retrieved (or an error
* occurred).
*
* Returns: Returns the number of ready events which have been fetched, or an
* error code, in case of error.
*/
/**
执行epoll_wait()的进程在该函数进入休眠状态.
**/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
long slack = 0;
wait_queue_t wait;
ktime_t expires, *to = NULL;
if (timeout > 0) {
/**
计算睡眠时间
**/
struct timespec end_time = ep_set_mstimeout(timeout);
slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec_to_ktime(end_time);
} else if (timeout == 0) {
/**
已经超时,直接检查ready list
**/
/*
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
goto check_events;
}
fetch_events:
spin_lock_irqsave(&ep->lock, flags);
/**
没有可用的事件,即ready list和ovflist均为空.
**/
if (!ep_events_available(ep)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
/**
初始化一个等待队列成员,current是当前进程.
然后把该等待队列成员添加到ep的等待队列中,即当前进程把自己添加到等待队列中.
**/
init_waitqueue_entry(&wait, current);
__add_wait_queue_exclusive(&ep->wq, &wait);
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
/**
将当前进程的状态设置为睡眠时可以被信号唤醒.
仅仅是状态设置,还没有睡眠.
**/
set_current_state(TASK_INTERRUPTIBLE);
/**
如果此时,ready list已经有成员了,或者已经超时,则不进入睡眠.
**/
if (ep_events_available(ep) || timed_out)
break;
/**
如果有信号产生,不进入睡眠.
**/
if (signal_pending(current)) {
res = -EINTR;
break;
}
spin_unlock_irqrestore(&ep->lock, flags);
/**
挂起当前进程,等待被唤醒或超时
**/
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
}
__remove_wait_queue(&ep->wq, &wait); // 把当前进程从该epollfd的等待队列中删除.
__set_current_state(TASK_RUNNING); // 将当前进程的状态设置为可运行.
}
check_events:
/* Is it worth to try to dig for events ? */
eavail = ep_events_available(ep);
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
/**
如果一切正常,并且有event发生,则拷贝数据给用户空间
**/
// ep_send_events()的具体分析在下面
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events;
return res;
}
static int ep_send_events(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
{
struct ep_send_events_data esed;
/**
@ fs/eventpoll.c
// Used by the ep_send_events() function as callback private data
struct ep_send_events_data {
int maxevents;
struct epoll_event __user *events;
};
**/
esed.maxevents = maxevents;
esed.events = events;
// ep_scan_ready_list()的具体分析在下面
return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
}
/**
* ep_scan_ready_list - Scans the ready list in a way that makes possible for
* the scan code, to call f_op->poll(). Also allows for
* O(NumReady) performance.
*
* @ep: Pointer to the epoll private data structure.
* @sproc: Pointer to the scan callback.
* @priv: Private opaque data passed to the @sproc callback.
* @depth: The current depth of recursive f_op->poll calls.
* @ep_locked: caller already holds ep->mtx
*
* Returns: The same integer error code returned by the @sproc callback.
*/
static int ep_scan_ready_list(struct eventpoll *ep,
int (*sproc)(struct eventpoll *,
struct list_head *, void *),
void *priv, int depth, bool ep_locked)
{
int error, pwake = 0;
unsigned long flags;
struct epitem *epi, *nepi;
LIST_HEAD(txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl().
*/
if (!ep_locked)
mutex_lock_nested(&ep->mtx, depth);
/*
* Steal the ready list, and re-init the original one to the
* empty list. Also, set ep->ovflist to NULL so that events
* happening while looping w/out locks, are not lost. We cannot
* have the poll callback to queue directly on ep->rdllist,
* because we want the "sproc" callback to be able to do it
* in a lockless way.
*/
spin_lock_irqsave(&ep->lock, flags);
/**
将ready list上的epitem(即监听事件发生状态改变的epitem)移动到txlist,
并且将ready list清空.
**/
list_splice_init(&ep->rdllist, &txlist);
/**
改变ovflist的值.
在上面的ep_poll_callback()中可以看到,如果ovflist != EP_UNACTIVE_PTR,当等待队列成员被激活时,
就会将对应的epitem加入到ep->ovflist中,否则加入到ep->rdllist中.
所以这里是为了防止把新来的发生状态改变的epitem加入到ready list中.
**/
ep->ovflist = NULL;
spin_unlock_irqrestore(&ep->lock, flags);
/*
* Now call the callback function.
*/
/**
调用扫描函数处理txlist.
该扫描函数就是ep_send_events_proc.具体分析在下面.
**/
error = (*sproc)(ep, &txlist, priv);
spin_lock_irqsave(&ep->lock, flags);
/*
* During the time we spent inside the "sproc" callback, some
* other events might have been queued by the poll callback.
* We re-insert them inside the main ready-list here.
*/
/**
在调用sproc()期间,可能会有新的事件发生(被添加到ovflist中),遍历这些发生新事件的epitem,
将它们插入到ready list中.
**/
for (nepi = ep->ovflist; (epi = nepi) != NULL;
nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
/**
@ fs/eventpoll.c
#define EP_UNACTIVE_PTR ((void *) -1L)
**/
/*
* We need to check if the item is already in the list.
* During the "sproc" callback execution time, items are
* queued into ->ovflist but the "txlist" might already
* contain them, and the list_splice() below takes care of them.
*/
/**
epitem不在ready list?插入!
**/
if (!ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake(epi);
}
}
/*
* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
* releasing the lock, events will be queued in the normal way inside
* ep->rdllist.
*/
/**
还原ovflist的状态
**/
ep->ovflist = EP_UNACTIVE_PTR;
/*
* Quickly re-inject items left on "txlist".
*/
/**
将上次没有处理完的epitem,重新插入到ready list中.
**/
list_splice(&txlist, &ep->rdllist);
__pm_relax(ep->ws);
/**
如果ready list不为空,唤醒.
**/
if (!list_empty(&ep->rdllist)) {
/*
* Wake up (if active) both the eventpoll wait list and
* the ->poll() wait list (delayed after we release the lock).
*/
if (waitqueue_active(&ep->wq))
wake_up_locked(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
spin_unlock_irqrestore(&ep->lock, flags);
if (!ep_locked)
mutex_unlock(&ep->mtx);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&ep->poll_wait);
return error;
}
/**
该函数作为callback在ep_scan_ready_list()中被调用.
head是一个链表头,链接着已经ready了的epitem.
这个链表不是eventpoll的ready list,而是上面函数中的txlist.
**/
static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
void *priv)
{
struct ep_send_events_data *esed = priv;
int eventcnt;
unsigned int revents;
struct epitem *epi;
struct epoll_event __user *uevent;
struct wakeup_source *ws;
poll_table pt;
init_poll_funcptr(&pt, NULL);
/*
* We can loop without lock because we are passed a task private list.
* Items cannot vanish during the loop because ep_scan_ready_list() is
* holding "mtx" during this call.
*/
/**
遍历整个链表
**/
for (eventcnt = 0, uevent = esed->events;
!list_empty(head) && eventcnt < esed->maxevents;) {
/**
取出第一个结点
**/
epi = list_first_entry(head, struct epitem, rdllink);
/*
* Activate ep->ws before deactivating epi->ws to prevent
* triggering auto-suspend here (in case we reactive epi->ws
* below).
*
* This could be rearranged to delay the deactivation of epi->ws
* instead, but then epi->ws would temporarily be out of sync
* with ep_is_linked().
*/
// TODO
ws = ep_wakeup_source(epi);
if (ws) {
if (ws->active)
__pm_stay_awake(ep->ws);
__pm_relax(ws);
}
/**
从ready list中删除该结点
**/
list_del_init(&epi->rdllink);
/**
获取ready事件掩码
**/
revents = ep_item_poll(epi, &pt);
/**
ep_item_poll()的具体分析在上面的ep_insert()中.
**/
/*
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
if (revents) {
/**
将ready事件和用户传入的数据都拷贝到用户空间
**/
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
list_add(&epi->rdllink, head);
ep_pm_stay_awake(epi);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
else if (!(epi->event.events & EPOLLET)) {
/**
边缘触发(ET)和水平触发(LT)的区别:
如果是ET,就绪epitem不会再次被加入到ready list中,除非fd再次发生状态改变,ep_poll_callback被调用.
如果是LT,不论是否还有有效的事件和数据,epitem都会被再次加入到ready list中,在下次epoll_wait()时会
立即返回,并通知用户空间.当然如果这个被监听的fd确实没有事件和数据,epoll_wait()会返回一个0.
**/
/*
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, no one can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake(epi);
}
}
}
return eventcnt;
}
/**
该函数在epollfd被close时调用,其工作是释放一些资源.
**/
static void ep_free(struct eventpoll *ep)
{
struct rb_node *rbp;
struct epitem *epi;
/* We need to release all tasks waiting for these file */
if (waitqueue_active(&ep->poll_wait))
ep_poll_safewake(&ep->poll_wait);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() while we're freeing the "struct eventpoll".
* We do not need to hold "ep->mtx" here because the epoll file
* is on the way to be removed and no one has references to it
* anymore. The only hit might come from eventpoll_release_file() but
* holding "epmutex" is sufficient here.
*/
mutex_lock(&epmutex);
/*
* Walks through the whole tree by unregistering poll callbacks.
*/
for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_unregister_pollwait(ep, epi);
cond_resched();
}
/*
* Walks through the whole tree by freeing each "struct epitem". At this
* point we are sure no poll callbacks will be lingering around, and also by
* holding "epmutex" we can be sure that no file cleanup code will hit
* us during this operation. So we can avoid the lock on "ep->lock".
* We do not need to lock ep->mtx, either, we only do it to prevent
* a lockdep warning.
*/
mutex_lock(&ep->mtx);
/**
在epoll_ctl()中被添加的监听fd,在这里被关闭.
**/
while ((rbp = rb_first(&ep->rbr)) != NULL) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_remove(ep, epi);
cond_resched();
}
mutex_unlock(&ep->mtx);
mutex_unlock(&epmutex);
mutex_destroy(&ep->mtx);
free_uid(ep->user);
wakeup_source_unregister(ep->ws);
kfree(ep);
}

  2.实现过程

  一. epoll_create

  1. 调用ep_alloc()来创建一个struct eventpoll对象.ep_alloc()的执行过程如下:
    1a. 获取当前用户的一些信息.
    1b. 分配一个struct eventpoll对象.
    1c. 初始化相关数据成员,如等待队列,就绪链表,红黑树.
  2. 创建一个匿名fd和与之对应的struct file对象.
  3. 将该eventpoll和该file关联起来,eventpoll对象保存在file对象的private_data指针中.

  二. epoll_ctl

  1. 将event拷贝到内核空间.
  2. 判断加入的fd是否支持poll操作.
  3. 根据用户传入的op参数,以及是否在eventpoll的红黑树中找到该fd的结点,来执行相应的操作(插入,删除,修改).拿插入举例,执行ep_insert():
    3a. 在slab缓存中分配一个epitem对象,并初始化相关数据成员,如保存待监听的fd和它的file结构.
    3b. 指定调用poll_wait()时(再次强调,不是epoll_wait)时的回调函数,用于数据就绪时唤醒进程.(其实质是初始化文件的等待队列,将进程加入到等待队列).
    3c. 到此该epitem就和这个待监听的fd关联起来了.
    3d. 将该epitem插入到eventpoll的红黑树中.

  三. epoll_wait

  1. 调用ep_poll():
    1a. 计算睡眠时间(如果有).
    1b. 判断eventpoll的就绪链表是否为空,不为空则直接处理而不是睡眠.
    1c. 将当前进程添加到eventpoll的等待队列中.
    1d. 进入循环.
    1e. 将当前进程设置成TASK_INTERRUPTIBLE状态,然后判断是否有信号到来,如果没有,则进入睡眠.
    1f. 如果超时或被信号唤醒,则跳出循环.
    1g. 将当前进程从等待队列中删除,并把其状态设置成TASK_RUNNING.
    1h. 将数据拷贝给用户空间.拷贝的过程是先把ready list转移到中间链表,然后遍历中间链表拷贝到用户空间,并且判断每个结点是否水平触发,是则再次插入
    到ready list.

  3.小结

  从上述分析可见,相对于select/poll,epoll的高效体现在:

  1. fd只拷贝一次,即调用epoll_ctl()时把fd拷贝到内核空间.
  2. epoll轮询的是就绪链表,而不是所有fd.

  最后

  本以为两天时间就可以分析完这些源码并完成这篇博文,谁知道花了整整一个星期.不过收获匪浅.
  在此留下两个问题:

  1. 因为目前我的知识面有限,上述源码留下一些TODO,日后会一一完善.
  2. 话说epoll有什么缺点呢?
 

select, poll, epoll的实现分析的更多相关文章

  1. Linux下select&poll&epoll的实现原理(一)

    最近简单看了一把 linux-3.10.25 kernel中select/poll/epoll这个几个IO事件检测API的实现.此处做一些记录.其基本的原理是相同的,流程如下 先依次调用fd对应的st ...

  2. 多进程、协程、事件驱动及select poll epoll

    目录 -多线程使用场景 -多进程 --简单的一个多进程例子 --进程间数据的交互实现方法 ---通过Queues和Pipe可以实现进程间数据的传递,但是不能实现数据的共享 ---Queues ---P ...

  3. select.poll,epoll的区别与应用

    先讲讲同步I/O的五大模型 阻塞式I/O, 非阻塞式I/O, I/O复用,信号驱动I/O(SIGIO),异步I/O模型 而select/poll/epoll属于I/O复用模型 select函数 该函数 ...

  4. select poll epoll三者之间的比较

    一.概述 说到Linux下的IO复用,系统提供了三个系统调用,分别是select poll epoll.那么这三者之间有什么不同呢,什么时候使用三个之间的其中一个呢? 下面,我将从系统调用原型来分析其 ...

  5. Linux下select&poll&epoll的实现原理(一)【转】

    转自:http://www.cnblogs.com/lanyuliuyun/p/5011526.html 最近简单看了一把 linux-3.10.25 kernel中select/poll/epoll ...

  6. Java IO 学习(二)select/poll/epoll

    如上文所说,select/poll/epoll本质上都是同步阻塞的,但是由于实现了IO多路复用,在处理聊天室这种需要处理大量长连接但是每个连接上数据事件较少的场景时,相比最原始的为每个连接新开一个线程 ...

  7. Linux内核中网络数据包的接收-第二部分 select/poll/epoll

    和前面文章的第一部分一样,这些文字是为了帮别人或者自己理清思路的.而不是所谓的源代码分析.想分析源代码的,还是直接debug源代码最好,看不论什么文档以及书都是下策. 因此这类帮人理清思路的文章尽可能 ...

  8. select/poll/epoll on serial port

    In this article, I will use three asynchronous conferencing--select, poll and epoll on serial port t ...

  9. Python之路-python(Queue队列、进程、Gevent协程、Select\Poll\Epoll异步IO与事件驱动)

    一.进程: 1.语法 2.进程间通讯 3.进程池 二.Gevent协程 三.Select\Poll\Epoll异步IO与事件驱动 一.进程: 1.语法 简单的启动线程语法 def run(name): ...

随机推荐

  1. Using $this when not in object context in

    错误信息:$this引用没有上下文 原因:在PHP5中,static声明的静态方法里不可以使用$this 需要使用self来引用当前类中的方法或是变量. 引用的方法里不可以带$this(示例代码中为g ...

  2. JAVA中的数据存储空间简述

    在 JAVA 中,有六个不同的地方可以存储数据: 1. 寄存器( register ): 最快的存储区,因为它位于不同于其他存储区——处理器内部.但是寄存器的数量极其有限,所以寄存器由编译器根据需求进 ...

  3. Oracle中的游标

    Oracle游标 概念:内存中的一块区域,存放select结果 游标用来处理从数据库中检索的多行记录(使用SELECT语句).利用游标,程序可以逐个地处理和遍历一次检索返回的整个记录集.一.显示游标( ...

  4. 2.Ray-消息发布器与消息存储器

    消息发布器: Ray是基于Event Sourcing设计的ES/Actor框架,ESGrain状态(State)的修改.ESGrain之间的通信默认使用RabbitMQ通信.消息的发布器主要是Rab ...

  5. BZOJ 2809: [Apio2012]dispatching [斜堆]

    题意:主席树做法见上一题 我曾发过誓再也不写左偏树(期末考试前一天下午5个小时没写出棘手的操作) 于是我来写斜堆啦 从叶子往根合并,维护斜堆就行了 题目连拓扑序都给你了... 说一下斜堆的操作: 合并 ...

  6. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  7. 配置Nginx代理服务器

    nginx另一个使用的比较多的情况是作为代理服务器,代理服务器接收请求,然后把请求传递到代理服务器,nginx最后会提取代理服务器的回复,并把这些回复发送给客户端.我们将配置一个基本的代理服务器,图片 ...

  8. springBoot之配置文件的读取以及过滤器和拦截器的使用

    前言 在之前的学习springBoot中,成功的实现了Restful风格的基本服务.但是想将之前的工程作为一个项目来说,那些是仅仅不够的.可能还需要获取自定义的配置以及添加过滤器和拦截器.至于为什么将 ...

  9. WebView性能优化--独立进程

    Android允许一个app同时存在多个进程,可以根据需要把不同的模块放到不同进程中处理. 一.WebView独立进程的好处 1.有效增大App的运存,减少由webview引起的内存泄露对主进程内存的 ...

  10. .net 分割字符串

    string a = "1-2-3-4-5-6-7-8-9"; string[] b = a.Split(new Char[] { '-' }); for (int i = 0; ...