[HNOI2011]XOR和路径
题面在这里
题意:给定一个无向图,从1号节点出发,每次等概率选择连接该节点的一条边走到另一个节点,到达n号节点时,将走过的路径上的所有边权异或起来,求这个异或和的期望
sol
一道期望大火题(表示看了zsy大佬和ycb大佬的题解才过去的orz)
递推期望,因为是异或和,按照正常方法会很难,于是考虑按位DP(套路吧),即对于边权在二进制下的每一位分别讨论
设状态的时候需要注意
如果设\(f[x]\)表示从1号节点到达x号节点且异或和为1的概率
那么在转移的时候,因为到达n号节点的时候就已经停止,所以f[n]不能转移;而我们又必须求出\(f[n]\),因此必须先对除n以外的所有点进行计算,再推到n,这样会很麻烦
于是想到倒着推,设\(f[x]\)表示从x号节点到达n号节点且异或和为1的概率,答案为\(f[1]\),虽然说也不能从\(f[n]\)转移,但因为要求解的不是\(f[n]\)所以就让求解变得可行了
通过边进行转移:
\]
意即该位权值为1的点通过0边和该位权值为0的点通过1边到达点u所得的该位权值都是1
由于每个f[u]都和另外的f[v]产生依赖关系,故无法直接递推求解
高斯消元大显身手啦!!!!!!
代码
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
const int mod=1e9+7;
const int N=110;
const double eps=1e-10;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
int n,m,head[N],nxt[N*N*2],to[N*N*2],val[N*N*2],d[N],cnt;
il void add(int u,int v,int w){
to[++cnt]=v;d[v]++;
val[cnt]=w;
nxt[cnt]=head[u];
head[u]=cnt;
}
dd S[35][N][N],ans[35][N],sum;
il bool gauss(int a){
//高斯消元部分
for(RG int i=1;i<=n;i++){
for(RG int j=i;j<=n;j++)
if(abs(S[a][j][i])>eps){
swap(S[a][j],S[a][i]);break;
}
if(abs(S[a][i][i])<=eps)return 0;
for(RG int j=i+1;j<=n;j++){
ans[a][j]-=ans[a][i]*S[a][j][i]/S[a][i][i];
for(RG int k=n;k>=i;k--)
S[a][j][k]-=S[a][i][k]*S[a][j][i]/S[a][i][i];
}
}
for(RG int i=n;i;i--){
for(RG int j=i+1;j<=n;j++)
ans[a][i]-=S[a][i][j]*ans[a][j];
ans[a][i]/=S[a][i][i];
}
return 1;
}
int main()
{
n=read();m=read();
for(RG int i=1,u,v,w,t;i<=m;i++){
u=read();v=read();w=read();t=0;
add(u,v,w);if(u!=v)add(v,u,w);
}
//这里是统计系数
for(RG int u=1;u<n;u++){
for(RG int i=0;i<=32;i++)S[i][u][u]+=1.0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i],t=0;
while(t<=32){
S[t][u][v]+=((val[i]&1)?1:(-1))*1.0/(d[u]*1.0);
ans[t][u]+=((val[i]&1)?1:0)*1.0/(d[u]*1.0);
val[i]>>=1;t++;
}
}
}for(RG int i=0;i<=32;i++)S[i][n][n]+=1.0;
//这样可以保证最后f[n]==0消除f[n]的影响
for(RG int i=0;i<=32;i++)gauss(i);
for(RG ll i=0,x=1;i<=32;i++){sum+=ans[i][1]*x;x<<=1;}
//按位统计答案
printf("%.3lf\n",sum);
return 0;
}
注:还有一道[HNOI2013]游走和此题思想类似,题解在这里
[HNOI2011]XOR和路径的更多相关文章
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- [HNOI2011]XOR和路径 && [HNOI2013]游走
[HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- [Wc2011] Xor 和 [HNOI2011]XOR和路径
Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Prob ...
- LG3211 [HNOI2011]XOR和路径
题意 题目描述 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的"XOR 和"最大.该 ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
随机推荐
- nyoj 1129 Salvation 模拟
思路:每个坐标有四种状态,每个点对应的每种状态只能走一个方向,如果走到一个重复的状态说明根本不能走到终点,否则继续走即可. 坑点:有可能初始坐标四周都是墙壁,如果不判断下可能会陷入是死循环. 贴上测试 ...
- hdu5296 01字典树
根据二进制建一棵01字典树,每个节点的答案等于左节点0的个数 * 右节点1的个数 * 2,遍历整棵树就能得到答案. AC代码: #include<cstdio> using namespa ...
- yum仓库详细解读
Yum:Yellowdog Updater,Modified的简称,起初由yellow dog发行版的开发者Terra Soft研发,用Python编写,后经杜克大学的Linux@Duke开发团队进行 ...
- HashMap并发导致死循环 CurrentHashMap
为何出现死循环简要说明 HashMap闭环的详细原因 cocurrentHashMap的底层机制 为何出现死循环简要说明 HashMap是非线程安全的,在并发场景中如果不保持足够的同步,就有可能在执行 ...
- orcale和hive常用函数对照表(?代表未证实)
函数分类 oracle hive 说明 字符函数 upper('coolszy') upper(string A) ucase(string A) 将文本字符串转换成字母全部大写形式 lower('K ...
- 关于instrinsicContentSize, ContentHuggingPriority, ContentcompressionResistancePriority的理解
ios 关于intrinsic理解 最近由于项目的需要想给MBProgressHUD添加一个自定义的view, 结果花费了一两个小时也没添加上去,添加上去的view没有实际的大小,即使你给他设置了一个 ...
- 如何编译linux第一个模块 hellomod.ko
Linux下的驱动程序也没有听上去的那么难实现,我们可以看一下helloworld这个例子就完全可以了解它的编写的方式! 我们还是先看一个这个例子,helloworld 1. [代码]hellowor ...
- redis的密码设置(windows与linux相同)
接着我们昨天的说,昨天redis的启动已经了解,今天来说说redis的密码设置.(不管怎么说redis也是数据库,也需要密码) 修改密码可以2种行径.第一种,直接修改配置文件,打开redis.conf ...
- java程序调用xfire发布的webService服务
昨天用xfire搭好了一个简单的webService的服务,可以在浏览器访问,今天便想要尝试以下如何调用这个服务及相关的方法.在网上查找了一些资料后,实现过程如下. 1.创建一个maven web项目 ...
- 安装Apache提示APR not found的解决办法
不知道为什么在安装apache2.2.22版本的时候没有任何问题,直接使用命令 ./configure --prefix=/home/www/www_test/software/apache-2.2. ...