BZOJ_1801_[Ahoi2009]chess 中国象棋_DP

Description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

Input

一行包含两个整数N,M,中间用空格分开.

Output

输出所有的方案数,由于值比较大,输出其mod 9999973

Sample Input

1 3

Sample Output

7

HINT

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6


容易知道一行里最多放2个炮。

设F[i][j][k]为当前在第i行有j列放了1个炮,有k列放了2个炮。

这行可能放0,1,2个。

分别乘上组合数转移。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=9999973;
ll f[110][110][110];
ll n,m;
int main() {
scanf("%lld%lld",&n,&m);
int i,j,k;
f[0][0][0]=1;
for(i=0;i<n;i++) {
for(j=0;j<=m;j++) {
for(k=0;j+k<=m;k++) {
f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod; if(j+1+k<=m)f[i+1][j+1][k]=(f[i+1][j+1][k]+f[i][j][k]*(m-j-k))%mod;
if(j) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j)%mod;
//if(j+k+1<=m)f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*k)%mod; if(m-j-k>=2)f[i+1][j+2][k]=(f[i+1][j+2][k]+f[i][j][k]*(m-j-k)*(m-j-k-1)/2)%mod;
if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*j*(j-1)/2)%mod;
if(m-j-k>=1)f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*(m-j-k)*j)%mod;
}
}
}
ll ans=0;
for(i=0;i<=m;i++) for(j=0;i+j<=m;j++) ans=(ans+f[n][i][j])%mod;
printf("%lld\n",ans);
}

BZOJ_1801_[Ahoi2009]chess 中国象棋_DP的更多相关文章

  1. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  2. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  3. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  4. Bzoj 1081 [Ahoi2009] chess 中国象棋

    bzoj 1081 [Ahoi2009] chess 中国象棋 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1801 状态比较难设,的确 ...

  5. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  6. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  7. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. bzoj 1801: [Ahoi2009]chess 中国象棋

    Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...

  9. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

随机推荐

  1. miniui几个常用知识点汇总

    1.在表格中去除系统自带的序列号,请看代码: function allAndBrief(id) { if(id==1){ grid.set({ columns: [ { type: "ind ...

  2. TCP / IP,HTTP

    大学学习网络基础的时候老师讲过,网络由下往上分为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层.通过初步的了解,我知道IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用 ...

  3. JAVA程序员面试宝典

    程序员面试之葵花宝典 面向对象的特征有哪些方面    1. 抽象:抽象就是忽略一个主题中与当前目标2. 无关的那些方面,3. 以便更充分地注意与当前目标4. 有关的方面.抽象并不5. 打算了解全部问题 ...

  4. 用python开发调试器——起始篇

    首先,你得准备一套python开发环境,正常情况下,一般是在windows下开发的,因为win系统应用广泛,再则就是要有个IDE,这里我选择我熟悉的Eclipse.环境搭建,网上都有,比如:http: ...

  5. 在Windows上安装Git

    实话实说,Windows是最烂的开发平台,如果不是开发Windows游戏或者在IE里调试页面,一般不推荐用Windows.不过,既然已经上了微软的贼船,也是有办法安装Git的. Windows下要使用 ...

  6. mac os x 10.9.3 升级到10.10.4 记录

    昨天终于忍不住,将mac pro 的操作系统从 os x 10.9.3 升级到10.10.4,因为网络不给力,500k/s,光系统包都要5.6G,所以整整下来了一个工作白天,等下班的时候开始安装,不过 ...

  7. JavaScript程序的执行顺序

    JavaScript程序的执行顺序:同步==>异步==>回调 同步是阻塞模式,异步是非阻塞模式.     同步就是指一个进程在执行某个请求的时候,若该请求需要一段时间才能返回信息,那么这个 ...

  8. leetCode刷题(将字符串转成W形状的字符串再以Z形字符串输出)

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  9. Python 基础【一】

    python运行流程 一.变量及注释 命名: 合法-变量名由字母.数字和下划线组成,并且不能以数字开头.以下保留字不可以当变量名: ['False', 'None', 'True', 'and', ' ...

  10. 团队项目第二阶段个人进展——Day4

    一.昨天工作总结 冲刺第四天,分析完成后端处理的数据有主题,时间,地点,照片信息,前几个都是字符串类型,后一个是照片格式 二.遇到的问题 照片格式数据不知道怎么处理 三.今日工作规划 学习后端小程序后 ...