BZOJ_2460_[BeiJing2011]元素_线性基

Description

相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
  后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。 
  并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
   现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。

Input

第一行包含一个正整数N,表示矿石的种类数。
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

3
1 10
2 20
3 30

Sample Output

50


高斯消元求线性基。

每次贪最大的把其他项消掉。

和装备购买那道题类似。

正常高斯消元怎么消这里就怎么消。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <bitset>
using namespace std;
typedef long long ll;
int n,w[1050];
bitset<66>a[1050];
void Gauss() {
int ans=0,i,j,mx,tot=0;
for(i=1;i<=63;i++) {
mx=0; tot++;
for(j=tot;j<=n;j++) {
if(a[j][i]&&w[j]>w[mx]) mx=j;
}
if(!mx) {
tot--; continue;
}
ans+=w[mx];
swap(a[mx],a[tot]); swap(w[mx],w[tot]);
for(j=1;j<=n;j++) {
if(a[j][i]&&j!=tot) a[j]^=a[tot];
}
}
printf("%d\n",ans);
}
int main() {
scanf("%d",&n);
int i,j;
ll x;
for(i=1;i<=n;i++) {
scanf("%lld%d",&x,&w[i]);
for(j=62;j>=0;j--) {
a[i][63-j]=((x>>(ll)j)&1ll);
}
}
Gauss();
}

BZOJ_2460_[BeiJing2011]元素_线性基的更多相关文章

  1. [BeiJing2011]元素[贪心+线性基]

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1245  Solved: 652[Submit][Stat ...

  2. BZOJ2460 [BeiJing2011]元素 【线性基】

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MB Submit: 1675  Solved: 869 [Submit][St ...

  3. BZOJ2460 Beijing2011元素(线性基+贪心)

    按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...

  4. 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)

    bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...

  5. bzoj 2460: [BeiJing2011]元素【线性基+贪心】

    先按魔力值从大到小排序,然后从大到小插入线性基中,如果插入成功就加上这个魔力值 因为线性基里是没有异或和为0的集合的,所以正确性显然,然后最优性,考虑放进去一个原来没选的,这样为了可行性就要删掉一个, ...

  6. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  7. LOJ114_k 大异或和_线性基

    LOJ114_k 大异或和_线性基 先一个一个插入到线性基中,然后高斯消元. 求第K小就是对K的每一位是1的都用对应的线性基的一行异或起来即可. 但是线性基不包含0的情况,因此不能确定能否组成0,需要 ...

  8. BZOJ_2844_albus就是要第一个出场_线性基

    BZOJ_2844_albus就是要第一个出场_线性基 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S ...

  9. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

随机推荐

  1. Course1-Python数据类型总结

    一. 开始正式学习前的tips: Python和其他语言有很多类似, 也有一些差异, 下面先总结了一些基本语法上的注意事项 1. 注意缩进 2. 一行语句分为多行显示: \ 3. 注释: 单行注释#, ...

  2. GitHub Desktop 如何创建本地仓库,上传代码,删除仓库

    1.创建本地仓库 2.打开本地仓库,将要上传的文件放到本地仓库. 3.ctrl+p push仓库或者菜单栏Repository下push也可以用右上角的publish respository 4.左边 ...

  3. Android平台的Swift—Kotlin

    WeTest 导读 Kotlin 已经出来较长一段时间了,有些同学已经对Kotlin进行了深入的学习,甚至已经运用到了自己的项目当中,但是还有较多同学可能只是听过Kotlin或简单了解过,这篇文章的目 ...

  4. 春天JDBC事务管理

    JDBC事务管理 春天提供编程式的事务管理(编程式事务管理)与声明式的事务管理(声明式事务management),为不同的事务实现提供了一致的编程模型,这节以JDBC事务为例,介绍Spring的事务管 ...

  5. Spring温故而知新 - bean的装配

    Spring装配机制 Spring提供了三种主要的装配机制: 1:通过XML进行显示配置 2:通过Java代码显示配置 3:自动化装配 自动化装配 Spring中IOC容器分两个步骤来完成自动化装配: ...

  6. DjangoRestFramework实践笔记

    1.Restful服务的实现方式一共三种:function based view,class based view,viewset+router,这三种实现方式的封装重度依序升高,越往后越适合典型CU ...

  7. java中split分割"."的问题

    今天使用split分割"."的时候居然失败了,经过百度发现原来要加转义字符才行. 正确的写法: String test="1.2.3"; String[] s1 ...

  8. 利用Python进行数据分析

    最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析 ...

  9. Taurus.MVC 支持Asp.Net Core 的过程

    前言: 这些天,似乎.NET Core相关的新闻和文章经常在我眼前晃~~~ 昨天,微软又发布了.Core 2.1,又愰了一下,差点没亮瞎我的眼睛. 好吧,大概是上天给我的暗示,毕竟 CYQ.Data  ...

  10. gawk编程语言

    gawk是一门功能丰富的编程语言,你可以通过它所提供的各种特性来编写好几程序处理数据. 22.1 使用变量 gawk编程语言支持两种不同类型的变量: 内建变量和自定义变量 22.1.1 内建变量 ga ...