[DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法
觉得有用的话,欢迎一起讨论相互学习~Follow Me
2.1 mini-batch gradient descent mini-batch梯度下降法
我们将训练数据组合到一个大的矩阵中
\(X=\begin{bmatrix}x^{(1)}&x^{(2)}&x^{(3)}&x^{(4)}&x^{(5)}...x^{(n)}\end{bmatrix}\)
\(Y=\begin{bmatrix}y^{(1)}&y^{(2)}&y^{(3)}&y^{(4)}&y^{(5)}...y^{(n)}\end{bmatrix}\)
在对整个数据集进行梯度下降时,你要做的是,你必须训练整个训练集,然后才能进行一步梯度下降法.然后需要重新训练整个数据集,才能进行下一步梯度下降法.所以你在训练整个训练集的一部分时就进行梯度下降,你的算法速度会更快.你可以把训练集分割为小一点的子训练集.这些小的训练集被称为mini-batch.每次训练一个mini-batch后就对模型的权值进行梯度下降的算法叫做mini-batch梯度下降法.
2.2 理解mini-batch梯度下降
在batch梯度下降中,每次迭代你都需要遍历整个训练集,可以预期正常情况下每次迭代的成本函数都会下降.
使用mini-batch梯度下降法时,会发现cost并不是每次迭代都下降的,看到的图像可能是以下这种情况.总体走向朝下但是有更多的噪声.
你需要决定的变量之一就是mini-batch的大小,m就是训练集的大小.
极端情况下,如果m=mini-batch,其实就是batch梯度下降法.在这种极端情况下,假设mini-batch大小为1一次只处理一个,就有了新的算法,叫做随机梯度下降法.
看两个极端情况下,成本函数的优化情况:
假设图中蓝点是最小值点,其中batch梯度下降从某处开始,相对噪声低些,幅度也大一些:
对于随机剃度下降,你只对一个样本进行梯度下降,大部分时候你向着全局最小值靠近,但是有时候你会偏离方向,因为那个样本恰好给你指的方向不正确.因此随机梯度下降法是有很多噪声的.平均来看会向着正确的方向,不过有时候也会方向错误.
因为随机梯度下降法永远不会收敛,而是会一直在最小值附近波动.但它并不会达到最小值并停留于此.
不同的梯度下降算法的利和弊
每次迭代需要处理大量训练样本,该算法主要弊端是特别是在训练样本数量巨大的时候,单次迭代耗时太长,如果训练样本不大,batch梯度下降法运行的很好.
相反如果使用随机梯度下降法,每次只训练一个训练样本,通过减少学习率,噪声也会相应的减少.但是其一大缺点是:你会失去所有向量化带给你的加速.
指导原则
如果训练集较小,就直接使用batch梯度下降法,样本集较小就没必要使用mini-batch梯度下降法.这里说的是少于2000个样本.这样比较适合使用batch梯度下降法.
不然如果数据量较大,一般的mini-batch大小为64到512,考虑到计算机的结构,一般来说,mini-batch的值取2的幂次方数比较合适,会相应的加快训练速度.
[DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法的更多相关文章
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...
- 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...
- Coursera Deep Learning笔记 改善深层神经网络:优化算法
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...
- [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...
- deeplearning.ai 改善深层神经网络 week2 优化算法 听课笔记
这一周的主题是优化算法. 1. Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...
- deeplearning.ai 改善深层神经网络 week2 优化算法
这一周的主题是优化算法. 1. Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...
随机推荐
- Ubuntu下配置ShadowS + Chrome
// 这是一篇导入进来的旧博客,可能有时效性问题. 题目和全文中的ShadowS指代以ShadowS开头名字的某工具,以预防文章被和谐.本机Ubuntu 14.04 LTS.在apt-get upda ...
- python写一个翻译的小脚本
起因: 想着上学看不懂English的PDF感慨万分........ 然后就有了翻译的脚本. 截图: 代码: #-*- coding:'utf-8' -*- import requests impor ...
- 【Java学习笔记之六】java三种循环(for,while,do......while)的使用方法及区别
第一种:for循环 循环结构for语句的格式: for(初始化表达式;条件表达式;循环后的操作表达式) { 循环体; } eg: class Dome_For2{ public st ...
- SPOJ GSS1_Can you answer these queries I(线段树区间合并)
SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...
- dijk
.....................用矩阵存..................... 1 int mp[N][N]; bool p[N]; int dist[N]; void dijk(int ...
- SPI、I2C、UART(转)
UART与USART(转) UART需要固定的波特率,就是说两位数据的间隔要相等. UART总线是异步串口,一般由波特率产生器(产生的波特率等于传输波特率的16倍).UART接收器.UART发送器组成 ...
- 爬 NationalData ,虽然可以直接下,但还是爬一下吧
爬取的是分省月度数据,2017年的,包括:居民消费价格指数,食品烟酒类居民消费价格指数,衣着类居民消费价格指数,居住类居民消费价格指数,生活用品及服务类居民消费价格指数,交通和通信类居民消费价格指数, ...
- 遍历数组中的元素(含es6方法)
假如有这样一个数组.arr = [12,34,45,46,36,58,36,59],现在要遍历该数组. 方法1:以前我们可能会这样做: for(var i=0;i<arr.length;i++) ...
- iframe及与页面之间的通信
获取iframe对象 iframe元素本身是位于父级页面中的,所以你可以像一个普通元素一样的使用和操作它 代表了iframe内容window对象是作为一个页面的属性加入到iframe中的, 为了让父级 ...
- asp.net -mvc框架复习(8)-实现用户登录模型部分的编写
1.配置文件添加数据库连接字符串(web.config) 2.编写通用数据库访问类 (1)引入命名空间 using System.Configuration; (2) 定义连接字符串 (3)编写完成 ...