poj-3522 最小生成树
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.
Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).
Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50 kruskal 求最小生成树 暴力枚举
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 5e4 + ;
const int INF = 0x7fffffff;
int fa[], vis[maxn];
int n, m;
struct node {
int u, v, w;
} qu[maxn];
int cmp(node a, node b) {
return a.w < b.w;
}
int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
}
int combine(int x, int y) {
int nx = Find(x);
int ny = Find(y);
if(nx != ny) {
fa[nx] = ny ;
return ;
}
return ;
}
int kruskal(int x) {
int big = -INF, small = INF, k = ;
for (int i = x ; i < m ; i++) {
if (combine(qu[i].u, qu[i].v)) {
k++;
big = max(big, qu[i].w);
small = min(small, qu[i].w);
}
}
if (k!=n-) return INF;
if (k==) return ;
return big - small;
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if (n == && m == ) break;
for (int i = ; i < m ; i++)
scanf("%d%d%d", &qu[i].u, &qu[i].v, &qu[i].w);
sort(qu, qu + m, cmp);
int ans = INF;
for (int i = ; i < m; i++) {
for (int j = ; j <= n ; j++) fa[j] = j;
ans = min(ans, kruskal(i));
}
if (ans==INF) printf("-1\n");
else printf("%d\n", ans);
}
return ;
}
poj-3522 最小生成树的更多相关文章
- poj 3522(最小生成树应用)
题目链接:http://poj.org/problem?id=3522思路:题目要求最小生成树中最大边与最小边的最小差值,由于数据不是很大,我们可以枚举最小生成树的最小边,然后kruskal求最小生成 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
- poj 2349(最小生成树应用)
题目链接:http://poj.org/problem?id=2349 思路:由于有S个专门的通道,我们可以先求一次最小生成树,然后对于最小生成树上的边从大到小排序,前S-1条边用S-1个卫星通道连接 ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
随机推荐
- warning: implicit declaration of function 'getMyfilename' [-Wimplicit-function-declaration]|
我在main后面定义了getMyfilename()函数,然后就报出这个warning. 在main前声明一下就好了.
- RHEL6 不重启扫描新添加硬盘
First find your host bus number grep mpt /sys/class/scsi_host/host?/proc_name Which should return a ...
- 自定义UICollectionViewLayout 布局实现瀑布流
自定义 UICollectionViewLayout 布局,实现瀑布流:UICollectionView和UICollectionViewCell 另行创建,这只是布局文件, 外界控制器只要遵守协议并 ...
- 大数据项目中的Oracle查询优化
今天发现自己之前写的一些SQL查询在执行效率方面非常不理想,于是尝试做了些改进. 需求为查询国地税表和税源表中,国税有而税源没有的条目数,之前的查询如下: SELECT COUNT(NAME) FRO ...
- Android 加载gif图片强大框架(支持预加载、缓存,还支持显示静态图片,一行代码全搞定)
之前项目中没有涉及到显示gif图片的功能,也没有着重研究过,最近项目中要用到显示gif图片,于是就在网上一顿搜,用过之后发现如下几个缺点. 1.加载大的gif图片会出现oom. 2.没有预加载和缓存功 ...
- 我对AOP的理解
1.问题 问题:想要添加日志记录.性能监控.安全监测 2.最初解决方案 2.1.最初解决方案 缺点:太多重复代码,且紧耦合 2.2.抽象类进行共性设计,子类进行个性设计,此处不讲解,缺点一荣俱荣,一损 ...
- plsql developer 使用 oracle instantclient的安装和配置
本文由ibyedo1贡献 1.下载 oracle instantclient basic package,在 oracle 官网下载就可以,地址如下: http://www.oracle.com/te ...
- java设计模式--简单工厂
java设计模式--简单工厂 简单工厂不是一个标准的设计模式,但是很常用需要掌握. 在java应用开发中,要"面向接口编程". 1.java中接口的概念: 在java中接口是一种特 ...
- apache压力测试工具的apache bench和JMeter的安装
Apache压力测试工具的安装 1,apache bench的安装 apache bench工具集成在http的软件包内,可以直接安装apache就可以. 当有些时候,我们不需要用到所有的软件包,我 ...
- ubuntu10.04 安装oracle server 版 笔记
1:从oracle 官网下载oracle 10g ,然后解压出一个database文件夹. 2 :创建RedHat的版本声明文件[默认ubuntu无法通过oracle 的检查] 在/etc/redha ...