sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

https://www.pythonprogramming.net/part-of-speech-tagging-nltk-tutorial/?completed=/stemming-nltk-tutorial/

# -*- coding: utf-8 -*-
"""
Created on Sun Nov 13 09:14:13 2016 @author: daxiong
"""
import nltk
from nltk.corpus import state_union
from nltk.tokenize import PunktSentenceTokenizer #训练数据
train_text=state_union.raw("2005-GWBush.txt")
#测试数据
sample_text=state_union.raw("2006-GWBush.txt")
'''
Punkt is designed to learn parameters (a list of abbreviations, etc.)
unsupervised from a corpus similar to the target domain.
The pre-packaged models may therefore be unsuitable:
use PunktSentenceTokenizer(text) to learn parameters from the given text
'''
#我们现在训练punkttokenizer(分句器)
custom_sent_tokenizer=PunktSentenceTokenizer(train_text)
#训练后,我们可以使用punkttokenizer(分句器)
tokenized=custom_sent_tokenizer.tokenize(sample_text) '''
nltk.pos_tag(["fire"]) #pos_tag(列表)
Out[19]: [('fire', 'NN')]
''' #文本词性标记函数
def process_content():
try:
for i in tokenized[0:5]:
words=nltk.word_tokenize(i)
tagged=nltk.pos_tag(words)
print(tagged)
except Exception as e:
print(str(e)) process_content()

One of the more powerful aspects of the NLTK module is the Part of Speech tagging that it can do for you. This means labeling words in a sentence as nouns, adjectives, verbs...etc. Even more impressive, it also labels by tense, and more. Here's a list of the tags, what they mean, and some examples:

POS tag list:

CC	coordinating conjunction
CD cardinal digit
DT determiner
EX existential there (like: "there is" ... think of it like "there exists")
FW foreign word
IN preposition/subordinating conjunction
JJ adjective 'big'
JJR adjective, comparative 'bigger'
JJS adjective, superlative 'biggest'
LS list marker 1)
MD modal could, will
NN noun, singular 'desk'
NNS noun plural 'desks'
NNP proper noun, singular 'Harrison'
NNPS proper noun, plural 'Americans'
PDT predeterminer 'all the kids'
POS possessive ending parent's
PRP personal pronoun I, he, she
PRP$ possessive pronoun my, his, hers
RB adverb very, silently,
RBR adverb, comparative better
RBS adverb, superlative best
RP particle give up
TO to go 'to' the store.
UH interjection errrrrrrrm
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing. present, non-3d take
VBZ verb, 3rd person sing. present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ possessive wh-pronoun whose
WRB wh-abverb where, when

How might we use this? While we're at it, we're going to cover a new sentence tokenizer, called the PunktSentenceTokenizer. This tokenizer is capable of unsupervised machine learning, so you can actually train it on any body of text that you use. First, let's get some imports out of the way that we're going to use:

import nltk
from nltk.corpus import state_union
from nltk.tokenize import PunktSentenceTokenizer

Now, let's create our training and testing data:

train_text = state_union.raw("2005-GWBush.txt")
sample_text = state_union.raw("2006-GWBush.txt")

One is a State of the Union address from 2005, and the other is from 2006 from past President George W. Bush.

Next, we can train the Punkt tokenizer like:

custom_sent_tokenizer = PunktSentenceTokenizer(train_text)

Then we can actually tokenize, using:

tokenized = custom_sent_tokenizer.tokenize(sample_text)

Now we can finish up this part of speech tagging script by creating a function that will run through and tag all of the parts of speech per sentence like so:

def process_content():
try:
for i in tokenized[:5]:
words = nltk.word_tokenize(i)
tagged = nltk.pos_tag(words)
print(tagged) except Exception as e:
print(str(e)) process_content()

The output should be a list of tuples, where the first element in the tuple is the word, and the second is the part of speech tag. It should look like:

[('PRESIDENT', 'NNP'), ('GEORGE', 'NNP'), ('W.', 'NNP'), ('BUSH', 'NNP'), ("'S", 'POS'), ('ADDRESS', 'NNP'), ('BEFORE', 'NNP'), ('A', 'NNP'), ('JOINT', 'NNP'), ('SESSION', 'NNP'), ('OF', 'NNP'), ('THE', 'NNP'), ('CONGRESS', 'NNP'), ('ON', 'NNP'), ('THE', 'NNP'), ('STATE', 'NNP'), ('OF', 'NNP'), ('THE', 'NNP'), ('UNION', 'NNP'), ('January', 'NNP'), ('31', 'CD'), (',', ','), ('2006', 'CD'), ('THE', 'DT'), ('PRESIDENT', 'NNP'), (':', ':'), ('Thank', 'NNP'), ('you', 'PRP'), ('all', 'DT'), ('.', '.')] [('Mr.', 'NNP'), ('Speaker', 'NNP'), (',', ','), ('Vice', 'NNP'), ('President', 'NNP'), ('Cheney', 'NNP'), (',', ','), ('members', 'NNS'), ('of', 'IN'), ('Congress', 'NNP'), (',', ','), ('members', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('Supreme', 'NNP'), ('Court', 'NNP'), ('and', 'CC'), ('diplomatic', 'JJ'), ('corps', 'NNS'), (',', ','), ('distinguished', 'VBD'), ('guests', 'NNS'), (',', ','), ('and', 'CC'), ('fellow', 'JJ'), ('citizens', 'NNS'), (':', ':'), ('Today', 'NN'), ('our', 'PRP$'), ('nation', 'NN'), ('lost', 'VBD'), ('a', 'DT'), ('beloved', 'VBN'), (',', ','), ('graceful', 'JJ'), (',', ','), ('courageous', 'JJ'), ('woman', 'NN'), ('who', 'WP'), ('called', 'VBN'), ('America', 'NNP'), ('to', 'TO'), ('its', 'PRP$'), ('founding', 'NN'), ('ideals', 'NNS'), ('and', 'CC'), ('carried', 'VBD'), ('on', 'IN'), ('a', 'DT'), ('noble', 'JJ'), ('dream', 'NN'), ('.', '.')] [('Tonight', 'NNP'), ('we', 'PRP'), ('are', 'VBP'), ('comforted', 'VBN'), ('by', 'IN'), ('the', 'DT'), ('hope', 'NN'), ('of', 'IN'), ('a', 'DT'), ('glad', 'NN'), ('reunion', 'NN'), ('with', 'IN'), ('the', 'DT'), ('husband', 'NN'), ('who', 'WP'), ('was', 'VBD'), ('taken', 'VBN'), ('so', 'RB'), ('long', 'RB'), ('ago', 'RB'), (',', ','), ('and', 'CC'), ('we', 'PRP'), ('are', 'VBP'), ('grateful', 'JJ'), ('for', 'IN'), ('the', 'DT'), ('good', 'NN'), ('life', 'NN'), ('of', 'IN'), ('Coretta', 'NNP'), ('Scott', 'NNP'), ('King', 'NNP'), ('.', '.')] [('(', 'NN'), ('Applause', 'NNP'), ('.', '.'), (')', ':')] [('President', 'NNP'), ('George', 'NNP'), ('W.', 'NNP'), ('Bush', 'NNP'), ('reacts', 'VBZ'), ('to', 'TO'), ('applause', 'VB'), ('during', 'IN'), ('his', 'PRP$'), ('State', 'NNP'), ('of', 'IN'), ('the', 'DT'), ('Union', 'NNP'), ('Address', 'NNP'), ('at', 'IN'), ('the', 'DT'), ('Capitol', 'NNP'), (',', ','), ('Tuesday', 'NNP'), (',', ','), ('Jan', 'NNP'), ('.', '.')]

At this point, we can begin to derive meaning, but there is still some work to do. The next topic that we're going to cover is chunking, which is where we group words, based on their parts of speech, into hopefully meaningful groups.

自然语言15_Part of Speech Tagging with NLTK的更多相关文章

  1. 自然语言15.1_Part of Speech Tagging 词性标注

    QQ:231469242 欢迎喜欢nltk朋友交流 https://en.wikipedia.org/wiki/Part-of-speech_tagging In corpus linguistics ...

  2. 自然语言12_Tokenizing Words and Sentences with NLTK

    https://www.pythonprogramming.net/tokenizing-words-sentences-nltk-tutorial/ # -*- coding: utf-8 -*- ...

  3. 词性标注 parts of speech tagging

    In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called grammatical tagging ...

  4. 自然语言处理NLP程序包(NLTK/spaCy)使用总结

    NLTK和SpaCy是NLP的Python应用,提供了一些现成的处理工具和数据接口.下面介绍它们的一些常用功能和特性,便于对NLP研究的组成形式有一个基本的了解. NLTK Natural Langu ...

  5. 自然语言27_Converting words to Features with NLTK

    https://www.pythonprogramming.net/words-as-features-nltk-tutorial/ Converting words to Features with ...

  6. 自然语言18.1_Named Entity Recognition with NLTK

    QQ:231469242 欢迎nltk爱好者交流 https://www.pythonprogramming.net/named-entity-recognition-nltk-tutorial/?c ...

  7. Part of Speech Tagging

    Natural Language Processing with Python Charpter 6.1 suffix_fdist处代码稍微改动. import nltk from nltk.corp ...

  8. 自然语言14_Stemming words with NLTK

    https://www.pythonprogramming.net/stemming-nltk-tutorial/?completed=/stop-words-nltk-tutorial/ # -*- ...

  9. python and 我爱自然语言处理

    曾经因为NLTK的 缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很多文本数据处理任务都交给了Python.离 开腾讯创业后,第一个作品课程图谱也 ...

随机推荐

  1. kill 根据PID终止进程

    根据PID终止进程 kill [option] PID-list kill 通过向一个或多个进程发送信号来终止进程.除超级用户外,只有进程的所有者才可以对进程执行kill 参数 PID-list为ki ...

  2. LVS ip-tun服务器脚本

    ifconfig tunl0 192.168.10.10 netmask 255.255.255.255 up route add -host 192.168.10.10 dev tunl0 ipvs ...

  3. myeclipse下java文件乱码问题解决

    中文乱码是因为编码格式不一致导致的.1.进入Eclipse,导入一个项目工程,如果项目文件的编码与你的工具编码不一致,将会造成乱码.2.如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文 ...

  4. Django- 1- 数据库设置

    更改配置文件中的 字段更改为 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', //按照自己的数据库配置配置,现在所配置 ...

  5. Shell配置_配置IP

    1.setup 打开图形化页面 a) 选择网络配置 b) 选择设置配置   c) 选择第一个网卡     2.启动网卡(第一个网卡)      vim /etc/sysconfig/network-s ...

  6. dede使用方法---用js让当前导航高亮显示

    当前导航高亮显示能够提升用户体验,我也知道,大家在网上搜dede让当前导航高亮显示的方法一抓一大把,但是,并不一定适合自己的需求.就像我的需求一样,导航有个二级导航,然后需要做到让当前导航高亮显示.我 ...

  7. 简进祥-SVN版本控制方案:多分支并行开发,多环境自动部署

    两地同时开发一个产品,目前线上有3个环境:测试环境.预发布环境.生产环境.目前系统部署采用jenkins自动化部署工具 用jenkins部署的方案 jenkins 测试环境:配置了各个分支的svn 地 ...

  8. 当findById(Integer id)变成String类型

    1.原Action // 添加跳转 @RequiresPermissions("pdaManager:v_add") @RequestMapping("/pdaManag ...

  9. 一些免费收费api收藏

    转载:http://blog.csdn.net/sdjianfei/article/details/53157334 一 .api 1.http://apistore.baidu.com/astore ...

  10. Ubuntu下C/C++man手册安装方法及使用方法

    C++在线文档: http://www.cplusplus.com/reference/ https://msdn.microsoft.com/zh-cn/library/aa187916.aspx  ...