HDU5855 Less Time, More profit(最大权闭合子图)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5855
Description
The city planners plan to build N plants in the city which has M shops.
Each shop needs products from some plants to make profit of proi units.
Building ith plant needs investment of payi units and it takes ti days.
Two or more plants can be built simultaneously, so that the time for building multiple plants is maximum of their periods(ti).
You should make a plan to make profit of at least L units in the shortest period.
Input
First line contains T, a number of test cases.
For each test case, there are three integers N, M, L described above.
And there are N lines and each line contains two integers payi, ti(1<= i <= N).
Last there are M lines and for each line, first integer is proi, and there is an integer k and next k integers are index of plants which can produce material to make profit for the shop.
1 <= T <= 30
1 <= N, M <= 200
1≤L,ti≤1000000000
1≤payi,proi≤30000
Output
For each test case, first line contains a line “Case #x: t p”, x is the number of the case, t is the shortest period and p is maximum profit in t hours. You should minimize t first and then maximize p.
If this plan is impossible, you should print “Case #x: impossible”
Sample Input
2
1 1 2
1 5
3 1 1
1 1 3
1 5
3 1 1
Sample Output
Case #1: 5 2
Case #2: impossible
分析
题目大概说有n个工厂,建各个工厂分别要payi的花费和ti的时间,可以同时建工厂。此外还有m个商店,如果各个商店所需要k间工厂都建了,那么就得到proi的收益。现在希望收益大于等于l,问在建工厂所花时间最少的前提下,能获得的最大收益是多少。
二分时间,判定最大收益能否大于等于l;而求最大收益,这就是典型的最大权闭合子图的模型了,最小割求解即可。
代码
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*888 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-1,sizeof(level));
memset(gap,0,sizeof(gap));
level[vt]=0;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-1) continue;
level[v]=level[u]+1;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-1,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=0,aug=INF;
gap[0]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^1].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==0) break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int n,m,l;
int pay[222],time[222],pro[222];
vector<int> need[222]; int isok(int t){
vs=0; vt=n+m+1; NV=vt+1; NE=0;
memset(head,-1,sizeof(head));
int totpro=0;
for(int i=1; i<=n; ++i){
if(time[i]<=t) addEdge(i+m,vt,pay[i]);
}
for(int i=1; i<=m; ++i){
bool flag=1;
for(int j=0; j<need[i].size(); ++j){
if(time[need[i][j]]>t){
flag=0;
break;
}
}
if(flag==0) continue;
addEdge(vs,i,pro[i]);
totpro+=pro[i];
for(int j=0; j<need[i].size(); ++j){
addEdge(i,need[i][j]+m,INF);
}
}
int res=totpro-ISAP();
if(res>=l) return res;
return -1;
} int main(){
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d%d%d",&n,&m,&l);
for(int i=1; i<=n; ++i){
scanf("%d%d",&pay[i],&time[i]);
}
for(int i=1; i<=m; ++i) need[i].clear();
for(int i=1; i<=m; ++i){
int a,b;
scanf("%d%d",&pro[i],&a);
for(int j=0; j<a; ++j){
scanf("%d",&b);
need[i].push_back(b);
}
}
int l=0,r=1000000001;
while(l<r){
int mid=l+r>>1;
if(isok(mid)!=-1) r=mid;
else l=mid+1;
}
printf("Case #%d: ",cse);
if(l==1000000001){
puts("impossible");
continue;
}
printf("%d %d\n",l,isok(l));
}
return 0;
}
HDU5855 Less Time, More profit(最大权闭合子图)的更多相关文章
- HDU 5855 Less Time, More profit 最大权闭合子图
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...
- Less Time, More profit 最大权闭合子图(最大流最小割)
The city planners plan to build N plants in the city which has M shops. Each shop needs products fro ...
- 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)
传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<jpi,j ...
- HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...
- 【POJ 2987】Firing (最小割-最大权闭合子图)
裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...
- 2018.06.27Firing(最大权闭合子图)
Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 11558 Accepted: 3494 Description ...
- POJ 2987 - Firing - [最大权闭合子图]
题目链接:http://poj.org/problem?id=2987 Time Limit: 5000MS Memory Limit: 131072K Description You’ve fina ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
随机推荐
- 利用颜色生成UIImage
// 颜色转换为背景图片 + (UIImage *)imageWithColor:(UIColor *)color { CGRect rect = CGRectMake(0.0f, 0.0f, 1. ...
- UIView和CALayer的区别
CALayer属于Core Animation部分的内容,比较重要而不太好理解.以下是园子中看到的一篇文章的摘录: 以下摘自<<核心动画编程指南>>: 两者最大的区别是,图层不 ...
- 安装jdk源码
step1:打开选择Window->Preference step2:选择Java->Installed JREs step3:选中你所安装的jre,点击Edit,进入Edit JRE,如 ...
- 使用vsphere client 克隆虚拟机
免费的VMWare ESXi5.0非常强大,于是在vSphere5.0平台中ESXi取代了ESX.,使用ESXi经常会遇到这样的问题,我需要建立多个虚拟机,都是windows2003操作系统,难道必须 ...
- js对象的创建与原型总结
//1 新建对象 var box = new Object(); box.name = "lee"; box.age = 100; box.run = function(){ re ...
- postgres与osm初步使用
layout: post title: postgres与osm初步使用 date: 2016-9-20 categories: blog tags: [地图开发] description:地图开发 ...
- logstash之multiline插件,匹配多行日志
在外理日志时,除了访问日志外,还要处理运行时日志,该日志大都用程序写的,比如log4j.运行时日志跟访问日志最大的不同是,运行时日志是多行,也就是说,连续的多行才能表达一个意思. 在filter中,加 ...
- 20.策略者模式(Stragety Pattern)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- android:id="@id/resid" , andorid:id="@+id/resid" 的区别
的区别?android:id="@id/resid" // 引用现有的资源idandorid:id="@+id/resid" // 新增一个资源id i ...
- 锁ReaderWriterLockSlim介绍
概述 ReaderWriterLockSlim 表示用于管理资源访问的锁定状态,可实现多线程读取或进行独占式写入访问: 常用的方法: cacheLock.EnterReadLock();//加上读取锁 ...