设$a$到$b$的边权为$c$的有向边的含义为$b\geq a+c$,则可以根据题意构造出一张有向图。

设$f[x]$为$x$点可行的最小值,$a[x]$为$x$位置已知的值,则$f[x]=\max(f[j]+w(j,i),a[x])$,其中$j$有边连向$i$。

通过拓扑排序+DP可以在$O(n)$时间内求出所有$f$,如果存在环或者与题意不符则无解。

用线段树优化这个连边的过程,点数$O(n+m)$,边数$O(k\log n)$。

#include<cstdio>
const int N=100010,M=400010,E=2000000;
int n,s,m,i,x,y,z,tot,l[N<<1],r[N<<1],pos[N];
int a[M],d[M],g[M],v[E],nxt[E],ed;char w[E];
int h,t,q[M],f[M];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y,char z){d[y]++;v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
int build(int a,int b){
int x=++tot;
if(a==b)return pos[a]=x;
int mid=(a+b)>>1;
add(l[x]=build(a,mid),x,0);
add(r[x]=build(mid+1,b),x,0);
return x;
}
void ask(int x,int a,int b,int c,int d){
if(c>d)return;
if(c<=a&&b<=d){add(x,tot,1);return;}
int mid=(a+b)>>1;
if(c<=mid)ask(l[x],a,mid,c,d);
if(d>mid)ask(r[x],mid+1,b,c,d);
}
inline void up(int&a,int b){if(a<b)a=b;}
int main(){
read(n),read(s),read(m);
build(1,n);
while(s--)read(x),read(y),a[pos[x]]=y;
while(m--){
read(x),read(y),read(z);
tot++;
for(i=1;i<=z;i++)read(q[i]),add(tot,pos[q[i]],0);
ask(1,1,n,x,q[1]-1);
ask(1,1,n,q[z]+1,y);
for(i=1;i<z;i++)ask(1,1,n,q[i]+1,q[i+1]-1);
}
for(h=i=1;i<=tot;i++)if(!d[i])f[q[++t]=i]=1;
while(h<=t){
x=q[h++];
if(f[x]>1000000000)return puts("NIE"),0;
if(a[x]){
if(a[x]<f[x])return puts("NIE"),0;
if(a[x]>f[x])f[x]=a[x];
}
for(i=g[x];i;i=nxt[i]){
up(f[v[i]],f[x]+w[i]);
if(!(--d[v[i]]))q[++t]=v[i];
}
}
if(t<tot)return puts("NIE"),0;
for(puts("TAK"),i=1;i<=n;i++)printf("%d ",f[pos[i]]);
return 0;
}

  

BZOJ4383 : [POI2015]Pustynia的更多相关文章

  1. BZOJ4383 [POI2015]Pustynia[线段树优化建边+拓扑排序+差分约束]

    收获挺大的一道题. 这里的限制大小可以做差分约束,从$y\to x$连$1$,表示$y\le x-1$即$y<x$,然后跑最长路求解. 但是,如果这样每次$k+1$个小区间每个点都向$k$个断点 ...

  2. bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...

  3. 【BZOJ4383】[POI2015]Pustynia 线段树优化建图

    [BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...

  4. [POI2015]Pustynia

    [POI2015]Pustynia 题目大意: 给定一个长度为\(n(n\le10^5)\)的正整数序列\(a\),每个数都在\(1\)到\(10^9\)范围内,告诉你其中\(s\)个数,并给出\(m ...

  5. 洛谷P3588 - [POI2015]Pustynia

    Portal Description 给定一个长度为\(n(n\leq10^5)\)的正整数序列\(\{a_n\}\),每个数都在\([1,10^9]\)范围内,告诉你其中\(s\)个数,并给出\(m ...

  6. 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

  7. 【BZOJ4383】[POI2015]pustynia

    题意: 建议Alt+F4百度一下 题解: 差分约束+线段树优化建图,直接按照拓扑序跑就行了 代码: #include<iostream> #include<cstring> # ...

  8. bzoj 4383: [POI2015]Pustynia

    复习了一下线段树优化建图的姿势,在线段树上连边跑拓扑排序 这题竟然卡vector……丧病 #include <bits/stdc++.h> #define N 1810000 using ...

  9. [BZOJ4383][POI2015] Pustynia-[线段树+dp+拓扑排序]

    Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],. ...

随机推荐

  1. AFNetworking(AFN)总结

    AFNetworking(AFN) ----主要做下载上传之用 //他是干啥的?发送请求,主要做下载上传之用 (苹果自带有获取服务器数据的方法NSURLConnection send,AFNetwor ...

  2. CodeForces 282C(位运算)

    C. XOR and OR time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. hdu 2159 FATE

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159 思路:二维完全背包,状态转移方程为: f[j][l]=max(f[j][l],f[j-b[i]] ...

  4. 清空mysql的历史记录

    # vi ~/.mysql_history show tables; show databases; 清空里面的内容,并不用退出当前shell,就可以清除历史命令!!

  5. MVC - 19.Log4net

    下载地址:http://pan.baidu.com/s/1gdxQegN   对于网站来讲,我们不能将异常信息显示给用户, Log4Net用来记录日志,可以将程序运行过程中的信息输出到文件,数据库中等 ...

  6. 回溯法解决N皇后问题(以四皇后为例)

    以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...

  7. python多线程之Event(事件)

    #!/usr/bin/env python # -*- coding: utf-8 -*- import time from threading import Thread, Event import ...

  8. Centos 上使用Mono+MVC5+WebApi+Sqlite

    鉴于现在网上很多Mono安装Jexus的方法已经过时,你打开百度搜索基本是几个前辈写的文字,很多其实是过去式了.踩的坑多自然使人望而生畏,而方便快捷的方法百度排名却太低,这里就安利下笔者刚成功使用的方 ...

  9. 如果我可以重新学习iOS开发(转)

    在过去的几个月里,我一直在学习用Objective-C编写iOS app,最后我开始理清思绪.这比我想象中要难很多,也花了太长时间. 我经常遇到困难.感到沮丧,修复bug比实际写代码要花太多时间.但是 ...

  10. 修改vs helpview手册路径

    Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Help\v2.1\Ca ...