【POJ 3415】Common Substrings 长度不小于k的公共子串的个数
长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!!
没开long long毁一生again~~~
以后应该早看POJ里的Discuss啊QAQ
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 200003; int t1[N], t2[N], c[N];
void st(int *x, int *y, int *sa, int n, int m) {
int i;
for(i = 0; i < m; ++i) c[i] = 0;
for(i = 0; i < n; ++i) ++c[x[y[i]]];
for(i = 1; i < m; ++i) c[i] += c[i - 1];
for(i = n - 1; i >= 0; --i) sa[--c[x[y[i]]]] = y[i];
}
void mkhz(int *a, int *sa, int n, int m) {
int *t, *x = t1, *y = t2, i, j, p;
for(i = 0; i < n; ++i) x[i] = a[i], y[i] = i;
st(x, y, sa, n, m);
for(p = 1, j = 1; p < n; j <<= 1, m = p) {
for(p = 0, i = n - j; i < n; ++i) y[p++] = i;
for(i = 0; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
st(x, y, sa, n, m);
for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; ++i)
x[sa[i]] = y[sa[i]] == y[sa[i - 1]] && y[sa[i] + j] == y[sa[i - 1] + j] ? p - 1 : p++;
}
}
void mkh(int *r, int *sa, int *rank, int *h, int n) {
int i, j, k = 0;
for(i = 1; i <= n; ++i) rank[sa[i]] = i;
for(i = 1; i <= n; h[rank[i++]] = k)
for(k ? --k : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; ++k);
} char s[N];
int a[N], sa[N], rank[N], h[N], n, k, sta[N], top, tmp, mark[N];
long long sum[N];
int main() {
while (scanf("%d", &k), k) {
scanf("%s", s + 1);
tmp = strlen(s + 1);
s[++tmp] = 1;
scanf("%s", s + tmp + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; ++i) a[i] = s[i];
mkhz(a, sa, n + 1, 130);
mkh(a, sa, rank, h, n);
long long ans = 0;
for(int i = 1; i <= n; ++i) {
if (h[i] < k) {
top = sum[0] = sum[1] = 0;
} else {
for(int j = top; sta[j] > h[i] - k + 1 && j; --j) {
sum[mark[j]] += h[i] - k + 1 - sta[j];
sta[j] = h[i] - k + 1;
}
sta[++top] = h[i] - k + 1;
if (sa[i - 1] < tmp) mark[top] = 0;
if (sa[i - 1] > tmp) mark[top] = 1;
sum[mark[top]] += h[i] - k + 1;
if (sa[i] < tmp) ans += sum[1];
if (sa[i] > tmp) ans += sum[0];
}
}
printf("%lld\n", ans);
}
return 0;
}
没开long long,毁我青春,耗我钱财,颓我精神==
【POJ 3415】Common Substrings 长度不小于k的公共子串的个数的更多相关文章
- POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)
http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...
- POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】
传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...
- Common Substrings POJ - 3415(长度不小于k的公共子串的个数)
题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1 sa[i] < len1 和 sa[i-1] < ...
- POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)
Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...
- poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数
Common Substrings Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 11469 Accepted: 379 ...
- POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)
题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...
- POJ 3415 不小于k的公共子串的个数
Common Substrings Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9248 Accepted: 3071 ...
- POJ - 3415 Common Substrings (后缀数组)
A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| T|. Given two s ...
- POJ 3415 Common Substrings(后缀数组 + 单调栈)题解
题意: 给两个串\(A.B\),问你长度\(>=k\)的有几对公共子串 思路: 先想一个朴素算法: 把\(B\)接在\(A\)后面,然后去跑后缀数组,得到\(height\)数组,那么直接\(r ...
随机推荐
- 升级Flash Builder 4.6中的Flash Player版本
测试有效 本人按此方法升级到了flash player 15 Adobe自发布Flash Builder 4.6后,就暂停了Flash Builder新版本的发布.但AIR和FlashPlayer版本 ...
- combobox 属性、事件、方法
一 .combobox 属性.事件.方法公共属性 名称 说明 AccessibilityObject 获取分配给该控件的 AccessibleObject. AccessibleDefaultActi ...
- 为什么那么多人想开发一元夺宝类app?
别拿你的无知和愚蠢,来证明主观的判断! 国人对一切事物具有怀疑的本性是好的, 但是若不建立于科学的分析方法, 那就是愚昧! 身边有朋友玩夺宝投入较多,产出较少,于是向我求助.想从数据分析的角度知道到底 ...
- js点击左右滚动+默认自动滚动类
js点击左右滚动+默认自动滚动类 点击下载
- Java 集合系列01之 总体框架
Java集合是java提供的工具包,包含了常用的数据结构:集合.链表.队列.栈.数组.映射等.Java集合工具包位置是java.util.*Java集合主要可以划分为4个部分:List列表.Set ...
- linux查看出口ip 及w3m字符浏览器
Linux 查看服务器出口IP 字符浏览器: http://wiki.ubuntu.org.cn/W3m
- [转]git fetch 的简单用法:更新远程代码到本地仓库
[原文地址]:http://my.eoe.cn/com360/archive/3533.html Git中从远程的分支获取最新的版本到本地方式如下,如何更新下载到代码到本地,请参阅ice的博客基于Gi ...
- codevs2010 求后序遍历
难度等级:白银 2010 求后序遍历 题目描述 Description 输入一棵二叉树的先序和中序遍历序列,输出其后序遍历序列. 输入描述 Input Description 共两行,第一行一个字符串 ...
- oracle: job使用
oracle的job,实际上就是数据库内置的定时任务,类似代码中的Timer功能.下面是使用过程: 这里我们模拟一个场景:定时调用存储过程P_TEST_JOB 向表TEST_JOB_LOG中插入数据 ...
- SpringMVC源码分析系列
说到java的mvc框架,struts2和springmvc想必大家都知道,struts2的设计基本上完全脱离了Servlet容器,而springmvc是依托着Servlet容器元素来设计的,同时sp ...