【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理
这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可
那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)×2+1))$$
注意要开$longlong$,否则会炸
#include<cstdio>
#include<algorithm>
using namespace std;
long long f[100003];
int main(){
int n,m;
long long k=0;
scanf("%d %d\n",&n,&m);
if (n>m)
swap(n,m);
for(int i=n;i>=1;--i){
f[i]=(long long)(n/i)*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
k+=f[i]*i*2-f[i];
}
printf("%lld\n",k);
return 0;
}
这样就行啦
zky学长讲的$O(n+\sqrt{n})$的快速筛积性函数的方法:
\[ \begin{aligned} ans & = \sum_{i=1}^n \sum_{j=1}^m gcd(i,j) \\ & = \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^n k[k|i][k|j][gcd(\frac{i}{k},\frac{j}{k})=1] \\ & = \sum_{k=1}^n k \sum_{i=1}^n \sum_{j=1}^m [k|i][k|j][gcd(\frac{i}{k},\frac{j}{k})=1] \\ & i=ki, j=kj \\ & = \sum_{k=1}^n k \sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor} [ gcd(i,j)=1] \\ & = \sum_{k=1}^n k \sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor} \sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor} [d|i][d|j] \mu(d) \\ & = \sum_{k=1}^n k \sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor} \mu(d) \sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor} [d|i][d|j] \\ & = \sum_{k=1}^n k \sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor} \mu(d) \left \lfloor \frac{n}{dk} \right \rfloor \left \lfloor \frac{m}{dk} \right \rfloor \\ & T=dk \\ & = \sum_{T=1}^n \left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor \sum_{d|T} \mu(d) \frac{T}{d} \\ \end{aligned}\]
xyx说因为$\sum_{d|T} \mu(d) \frac{T}{d}$(及$id×\mu$)是积性的,所以筛一筛就出来啦
无限仰膜O)Z OSZ OTZ
这个方法我就先不写了,因为我太蒟蒻有可能推错了,如果哪位神犇发现错误请指出来,万分感谢!!!
2016-03-30:达神的正解!上面那个看一眼就觉得纯属扯淡(没事莫比乌斯反演干什么):$(n<m)$
\[ \begin{aligned} ans & = \sum_{i=1}^n \sum_{j=1}^m gcd(i,j) \\ & = \sum_{i=1}^n \sum_{j=1}^m \sum_{d=1}^n [d|i][d|j] \phi(d) \\ & = \sum_{d=1}^n \sum_{i=1}^n \sum_{j=1}^m [d|i][d|j] \phi(d) \\ & = \sum_{d=1}^n \left \lfloor \frac{n}{d} \right \rfloor \left \lfloor \frac{m}{d} \right \rfloor \phi(d) \end{aligned} \]
【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理的更多相关文章
- [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...
- ●BZOJ 2005 NOI 2010 能量采集
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: 一个带有容斥思想的递推.%%% 首先,对于一个点 (x,y) 在路径 (0,0 ...
- bzoj 2005 NOI 2010 能量采集
我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1 那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点 的gcd值*2-n*m,那么问题转化成了求每个点的 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- [NOI 2010]能量采集
Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个 ...
- [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...
随机推荐
- UNITY在VS中调试
下载地址:https://visualstudiogallery.msdn.microsoft.com/site/search?f%5B0%5D.Type=RootCategory&f%5B0 ...
- lock关键字只不过是C#提供的语法糖
lock关键字只不过是C#提供的语法糖, 最终使用的还是Monitor类. Monitor类的Enter方法要求传入的参数不为null, 否则会有ArgumentNullException excep ...
- 使用C#向后台ACCESS数据库添加数据
Microsoft Office Access是由微软发布的关系数据库管理系统.它结合了 MicrosoftJet Database Engine 和 图形用户界面两项特点,是 Microsoft O ...
- jmeter的压力测试
Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试. 以下为压力测试的简单介绍 1.在测试计划下增加一个线程组 2.线程组的内容需要进行编辑,根据压力测 ...
- MYSQL数据库的操作
Mysql的连接方式: 1.原生函数:mysql_connect($server,$username,$password); //打开一个到Mysql服务器的连接 mysql_select_db( ...
- Json数据与Json数据转换
1.json数据 [{\"IS_DISTRIBUTOR_LIMIT\":0,\"PROVISION_PRICE\":null,\"PRO_STATUS ...
- 安装MySQLdb
MySQLdb模块不太好装,如果是在python2.7环境下,可以使用一种简易安装方式 root@iZ2893wjzgyZ:~# apt-get install python2.7-mysqldb 测 ...
- Permutation test 置换检验
来源:Public Library of Bioinformatics 显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那 ...
- 2795: [Poi2012]A Horrible Poem
2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 484 Solved: 235[Subm ...
- TinyFrame升级之四:IOC容器
在这个框架中,我们使用Autofac作为IOC容器,来实现控制反转,依赖注入的目的. 在程序加载的时候,我需要将系统中所有用到的接口与之对应的实现进行装载.由于用户交互部分是在TinyFrame.We ...