组合数取模就是求的值,根据的取值范围不同,采取的方法也不一样。

下面,我们来看常见的两种取值情况(m、n在64位整数型范围内)

(1)  ,

此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模。

(2) ,   ,并且是素数

 本文针对该取值范围较大又不太大的情况(2)进行讨论。

这个问题可以使用Lucas定理,定理描述:

      

 其中

这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p.

 已知C(n, m) mod p = n!/(m!(n - m)!) mod p。当我们要求(a/b)mod p的值,且a很大,无法直接求得a/b的值时,我们可以转而使用乘法逆元k,将a乘上k再模p,即(a*k) mod p。 其结果与(a/b) mod p等价。

那么逆元是什么?

定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元(当p是1时,对于任意a,k都为1)

除法取模,这里要用到m!(n-m)!的逆元。

根据费马小定理

已知gcd(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 ;

下面附上Lucas定理的一种证明,见下图,参考冯志刚《初等数论》第37页。

题意:,其中,并且是素数。

代码:

#include<iostream>
//#include<algorithm>
using namespace std;
typedef long long ll;
int quick_power_mod(int a,int b,int m){//pow(a,b)%m
int result = ;
int base = a;
while(b>){
if(b & ==){
result = (result*base) % m;
}
base = (base*base) %m;
b>>=;
}
return result;
}
//计算组合数取模
ll comp(ll a, ll b, int p) {//composite num C(a,b)%p
if(a < b) return ;
if(a == b) return ;
if(b > a - b) b = a - b; int ans = , ca = , cb = ;
for(ll i = ; i < b; ++i) {
ca = (ca * (a - i))%p;
cb = (cb * (b - i))%p;
}
ans = (ca*quick_power_mod(cb, p - , p)) % p;
return ans;
}
ll lucas(ll n, ll m, ll p) {
ll ans = ; while(n&&m&&ans) {
ans = (ans*comp(n%p, m%p, p)) % p;//also can be recusive
n /= p;
m /= p;
}
return ans;
}
int main(){
ll m,n;
while(cin>>n>>m){
cout<<lucas(n,m,)<<endl;
}
return ;
}

上面的代码中用到了求幂取模操作来计算(m!(n-m)!)p-2 % p.下面解释幂取模算法:

反复平方法 求ab%m

通过研究指数b的二进制表示发现,对任意的整数b都可表示为:

  • n表示b的实际二进制位数
  • bi表示该位是0或1

因此,ab可表示为:

即用b的每一位表示a的每一项,而对任意相邻的两项存在平方关系,即:

因此我们构造下面的算法:

    • 把b转换为二进制表示,并从右至左扫描其每一位(从低到高)
    • 当扫描到第i位时,根据同余性质(2)计算a的第i项的模:

      base变量表示第i-1位时计算出的模,通过递归能很容易地确定所有位的模。
    • 如果第i位为1,即bi=1,则表示该位需要参与模运算,计算结果 result = (result*base) mod m;其中result为前i-1次的计算结果;若bi=0,则表示a的第i项为1,不必参与模运算
int quick_power_mod(int a,int b,int m){
int result = 1;
int base = a;
while(b>0){
if(b & 1==1){
result = (result*base) % m;
}
base = (base*base) %m;
b >>=1;
}
return result;
}

其中运用了两个同余性质:

同余性质1:ab≡bc (mod m)

同余性质2:  a≡c (mod m) => a2≡c2 (mod m)

理解要点:

  • base记录了a的每项的模,无论b在该位是0还是1,该结果都记录,目的是给后续位为1的项使用,计算方式是前一结果的平方取模,这也是反复平方法的由来
  • result只记录了位为1的项的模结果,该计算方式使用了同余性质1
  • 通过地把a使用二进制表示,并结合同余性质1,2,巧妙地化解了大数取模的运算。对1024位这样的大数,也最多进行1024次循环便可计算模值,性能非常快。

该方法是许多西方数学家努力的结果,通常也称为Montgomery算法。

(以上部分内容由网络搜集整理而来,不当之处,烦请不吝赐教)

组合数取模Lucas定理及快速幂取模的更多相关文章

  1. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  2. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  3. HDU-2817,同余定理+快速幂取模,水过~

    A sequence of numbers                                                             Time Limit: 2000/1 ...

  4. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  5. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  6. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  7. POJ3641-Pseudoprime numbers(快速幂取模)

    题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...

  8. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  9. HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模

    小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

随机推荐

  1. 十大经典排序算法总结——JavaScrip版

    首先,对于评述算法优劣术语的说明: 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面:即排序后2个相等键值的顺序和排序之前它们的顺序相同 不稳定:如果a原本在b的前面,而a=b,排序之后a ...

  2. [转]spring 注入静态变量

    原文: http://www.cnblogs.com/xing901022/p/4168124.html 今天碰到一个问题,我的一个工具类提供了几种静态方法,静态方法需要另外一个类的实例提供处理,因此 ...

  3. easyui 中Datagrid 控件在列较多且无数据时,列显示不全的解决方案

    在onLoadSuccess 中加入如下代码就OK啦 $('#dg3').datagrid({ onLoadSuccess:function(data){ if(data.total==0){ var ...

  4. python数字图像处理(19):骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. m ...

  5. .net RPC框架选型

    近期开始研究分布式架构,会涉及到一个最核心的组件:RPC(Remote Procedure Call Protocol).这个东西的稳定性与性能,直接决定了分布式架构系统的好坏.RPC技术,我们的产品 ...

  6. JSP 4个域对象-9个内置对象-11个EL隐式对象

    一. 四大域对象 1. PageContext :页面范围的数据 2. ServletRequest:请求范围的数据 3. HttpSession:会话范围的数据 4. ServletContext: ...

  7. [网站公告]3月10日23:00-4:00阿里云SLB升级,会有4-8次连接闪断

    大家好,阿里云将于3月10日23:00-4:00对负载均衡服务(SLB)做升级操作,升级期间SLB网络连接会有约4-8次闪断.由此给您带来麻烦,敬请谅解! 阿里云SLB升级公告内容如下: 尊敬的用户: ...

  8. go-- 用go-mssql驱动连接sqlserver数据库

    import _ "github.com/denisenkom/go-mssqldb" import ( "crypto/cipher" "crypt ...

  9. JNI系列——简便开发流程

    1.编写Java代码 2.选中工程目录--右键单击Android Tools--Add Native Support 3.输入要生成的库名 4.到工程目录中jni目录下对自动生成文件和.mk文件进行相 ...

  10. nginx 的动静分离配置(tomcat)

    nginx+tomcat是想动静分离配置 首先在nginx的配置文件中添加tomcat的的集群配置 upstream tomcats { ip_hash; server 192.168.0.251:8 ...