[KOJ6024]合并果子·改(强化版)
[COJ6024]合并果子·改(强化版)
试题描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多把这些果子堆排成一排,然后所有的果子合成一堆。
每一次合并,多多可以把相邻两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
包括两行,第一行是一个整数n,表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^63。
输入示例
4
1 2 5 2
输出示例
20
数据规模及约定
1<=n<=1000
题解
我们可以用上一题的 dp 方法,然后进行优化。我们可以令 g[i][j] 表示 [i, j] 中最优合并方式的分界点,即使得 f[i][g[i][j]] + f[g[i][j]+1][j] 最小,不难发现 g[i][j-1] ≤ g[i][j] ≤ g[i+1][j],于是 f[i][j] = min{ f[i][k] + f[k+1][j] + S(i,j) | g[i][j-1] ≤ k ≤ g[i+1][j] },不难发现 (i - j + 1) 固定时,所有 g[i+1][j] - g[i][j-1] 之和是 n 的级别的,所以总时间复杂度变成了 O(n2).
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 110
#define oo (1ll << 63) - 1
#define LL long long
int n;
LL S[maxn], f[maxn][maxn]; int main() {
n = read();
for(int i = 1; i <= n; i++) S[i] = S[i-1] + read(); for(int len = 2; len <= n; len++)
for(int l = 1; l + len - 1 <= n; l++) {
int r = l + len - 1;
f[l][r] = oo;
for(int k = l; k < r; k++) f[l][r] = min(f[l][r], f[l][k] + f[k+1][r]);
f[l][r] += S[r] - S[l-1];
} printf("%lld\n", f[1][n]); return 0;
}
[KOJ6024]合并果子·改(强化版)的更多相关文章
- [KOJ6023]合并果子·改
[COJ6023]合并果子·改 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆. 每一次合并,多多可以 ...
- AC日记——手写堆ac合并果子(傻子)
今天整理最近的考试题 发现一个东西叫做优先队列 priority_queue(说白了就是大根堆) 但是 我对堆的了解还是很少的 所以 我决定手写一个堆 于是我写了一个简单的堆 手写的堆说白了就是个二叉 ...
- AHOI1997彩旗飘飘 VIJOS1097合并果子(noip2007)
AHOI彩旗飘飘 这是一题类似于排列组合的题目吧...递推状态 数组f[100][100][100][2];表示红旗数目,黄旗数目,颜色改变的次数,末尾的旗的颜色(0为黄,1为红) 之后就是如何写递推 ...
- NOIP 2004 合并果子
洛谷P1090 https://www.luogu.org/problemnew/show/P1090 JDOJ 1270 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分 ...
- 代码源 每日一题 分割 洛谷 P6033合并果子
题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...
- [django]数据导出excel升级强化版(很强大!)
不多说了,原理采用xlwt导出excel文件,所谓的强化版指的是实现在网页上选择一定条件导出对应的数据 之前我的博文出过这类文章,但只是实现导出数据,这次左思右想,再加上网上的搜索,终于找出方法实现条 ...
- 【noip 2004】 合并果子
noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...
- 合并果子 2004年NOIP全国联赛普及组
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆 ...
- NOIP2004合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
随机推荐
- AngularJs:String类型和JSON相互转换
最近一周做了一个页面,制作的过程中遇到各种问题,从中可以看出本人的js基础还不够扎实,angularjs也只是刚入门的水平,现在将制作过程中遇到的问题一一汇总,方便以后查阅. 一.String类型和J ...
- php适配器设计模式
<?php //适配器模式 //服务器端代码 class tianqi{ public static function show(){ $today= array('tep' =>28 , ...
- TP中验证码的实现
- 10月16日下午MySQL数据库CRUD操作(增加、删除、修改、查询)
1.MySQL注释语法--,# 2.2.后缀是.sql的文件是数据库查询文件. 3.保存查询. 关闭查询时会弹出提示是否保存,保存的是这段文字,不是表格(只要是执行成功了表格已经建立了).保存以后下次 ...
- Python学习笔记——基本语法
1.程序输出——print语句 >>> myString = 'Hello World!' >>> print myString Hello World! > ...
- js 滚动加载iframe框中内容
var isIE6 = !!window.ActiveXObject&&!window.XMLHttpRequest; //滚动加载 var scrollLoad =function( ...
- LOD
[教程] 三分钟了解LOD在游戏里面的运用 http://www.narkii.com/club/thread-321290-1.html Unity3d 游戏场景优化 - LOD(Level-of- ...
- Productivity Power Tools 是微软官方推出的 Visual Studio 扩展
Productivity Power Tools 是微软官方推出的 Visual Studio 扩展 免费的精品: Productivity Power Tools 动画演示
- Struts2版本配置2.1以前与以后---关于filter的配置
严重: Dispatcher initialization failed java.lang.RuntimeException JavaStrutsfreemarkerApacheXML 严重: D ...
- 创建守护进程步骤与setsid() -- linux deamon进程
原创:http://www.cnblogs.com/mickole/p/3188321.html 一,守护进程概述 Linux Daemon(守护进程)是运行在后台的一种特殊进程.它独立于控制终端并且 ...