[COJ6024]合并果子·改(强化版)

试题描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多把这些果子堆排成一排,然后所有的果子合成一堆。
    每一次合并,多多可以把相邻两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
    因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
    例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入

包括两行,第一行是一个整数n,表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出

包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^63。

输入示例

4
1 2 5 2

输出示例

20

数据规模及约定

1<=n<=1000

题解

我们可以用上一题的 dp 方法,然后进行优化。我们可以令 g[i][j] 表示 [i, j] 中最优合并方式的分界点,即使得 f[i][g[i][j]] + f[g[i][j]+1][j] 最小,不难发现 g[i][j-1] ≤ g[i][j] ≤ g[i+1][j],于是 f[i][j] = min{ f[i][k] + f[k+1][j] + S(i,j) | g[i][j-1] ≤ k ≤ g[i+1][j] },不难发现 (i - j + 1) 固定时,所有 g[i+1][j] - g[i][j-1] 之和是 n 的级别的,所以总时间复杂度变成了 O(n2).

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 110
#define oo (1ll << 63) - 1
#define LL long long
int n;
LL S[maxn], f[maxn][maxn]; int main() {
n = read();
for(int i = 1; i <= n; i++) S[i] = S[i-1] + read(); for(int len = 2; len <= n; len++)
for(int l = 1; l + len - 1 <= n; l++) {
int r = l + len - 1;
f[l][r] = oo;
for(int k = l; k < r; k++) f[l][r] = min(f[l][r], f[l][k] + f[k+1][r]);
f[l][r] += S[r] - S[l-1];
} printf("%lld\n", f[1][n]); return 0;
}

[KOJ6024]合并果子·改(强化版)的更多相关文章

  1. [KOJ6023]合并果子·改

    [COJ6023]合并果子·改 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆.    每一次合并,多多可以 ...

  2. AC日记——手写堆ac合并果子(傻子)

    今天整理最近的考试题 发现一个东西叫做优先队列 priority_queue(说白了就是大根堆) 但是 我对堆的了解还是很少的 所以 我决定手写一个堆 于是我写了一个简单的堆 手写的堆说白了就是个二叉 ...

  3. AHOI1997彩旗飘飘 VIJOS1097合并果子(noip2007)

    AHOI彩旗飘飘 这是一题类似于排列组合的题目吧...递推状态 数组f[100][100][100][2];表示红旗数目,黄旗数目,颜色改变的次数,末尾的旗的颜色(0为黄,1为红) 之后就是如何写递推 ...

  4. NOIP 2004 合并果子

    洛谷P1090 https://www.luogu.org/problemnew/show/P1090 JDOJ 1270 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分 ...

  5. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

  6. [django]数据导出excel升级强化版(很强大!)

    不多说了,原理采用xlwt导出excel文件,所谓的强化版指的是实现在网页上选择一定条件导出对应的数据 之前我的博文出过这类文章,但只是实现导出数据,这次左思右想,再加上网上的搜索,终于找出方法实现条 ...

  7. 【noip 2004】 合并果子

    noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...

  8. 合并果子 2004年NOIP全国联赛普及组

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆 ...

  9. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

随机推荐

  1. Java反射机制<1>

    如果要通过一个对象找到一个类的名称,此时就需要用到反射机制(反射技术是用来做框架的,一般情况下Java私有对象不能被访问,但是暴力反射可以访问私有对象). 任何一个类如果没有明确地声明继承自哪个父类的 ...

  2. yourphp读取分类名称{$Categorys[$r[catid]]['catname']}

    页面代码:  product_list.html 提供分类的id,找出分类的名称 {$Categorys[$r[catid]]['catname']}

  3. adapter(转自Devin Zhang)

    1.概念 Adapter是连接后端数据和前端显示的适配器接口,是数据和UI(View)之间一个重要的纽带.在常见的View(ListView,GridView)等地方都需要用到Adapter.如下图直 ...

  4. Specified key was too long; max key length is 767 bytes mysql

    Specified key was too long; max key length is 767 bytes 说明: 执行当前 Web 请求期间,出现未经处理的异常.请检查堆栈跟踪信息,以了解有关该 ...

  5. servlet中的相对路径和绝对路径 及/, ./, ../的区别

    ./ 当前目录../ 父级目录/ 根目录资源寻找都是依靠路径,资源存储方式是按照哈希表运算的,所以路径的计算其实就是哈希值的计算. servlet中,所有路径的配置都要用绝对路径. 什么是绝对路径,就 ...

  6. elasticsearch集群管理工具head插件(转)

    elasticsearch-head是一个elasticsearch的集群管理工具,它是完全由html5编写的独立网页程序,你可以通过插件把它集成到es 插件安装方法1: 1.elasticsearc ...

  7. MD5 (摘要加密)

    MD5 约定 同样的密码,同样的加密算法,每次加密的结果是不一样 密码方案 方案一:直接 MD5 pwd = pwd.md5String; 非常不安全 方案二 MD5 + 盐 pwd = [pwd s ...

  8. Linux服务器管理: 系统的进程管理终止进程kill命令

    在Linux中如何用kill终止进程: kill -l [root@localhost~]#kill -l   可以看到kill中有很多的 常用:  -1 是重启一个进程    -9 是强制杀死进程 ...

  9. Java字节流:BufferedInputStream BufferedOutputStream

    -----------------------------------------------------------------------------------BufferedInputStre ...

  10. php操作mysql数据库

    <span style="font-family:Arial,Helvetica,sans-serif">在php操作数据库过,会频繁对数据库进行各种操作,所以,php ...