#ifndef __TREE_H
#define __TREE_H
#include <iostream> template<typename T> class TreeNode {
private:
T _data;
TreeNode<T>* _left;
TreeNode<T>* _right;
TreeNode<T>* _parent;
public:
TreeNode(T data,
TreeNode<T>* parent=,
TreeNode<T>* left=,
TreeNode<T>* right=)
:_data(data),_parent(parent),_left(left),_right(right) {}
void insertAtLeft(T data);
void insertAtRight(T data);
T& getData();
TreeNode<T>*& getLeft();
TreeNode<T>*& getRight();
TreeNode<T>*& getParent();
}; template<typename T>
T& TreeNode<T>::getData()
{
return _data;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getLeft()
{
return _left;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getRight()
{
return _right;
} template<typename T>
TreeNode<T>*& TreeNode<T>::getParent()
{
return _parent;
} template<typename T>
void TreeNode<T>::insertAtLeft(T data)
{
_left = new TreeNode(data,this);
} template<typename T>
void TreeNode<T>::insertAtRight(T data)
{
_right = new TreeNode(data,this);
} template <typename T> class Tree{
private:
TreeNode<T>* _root;
int _size;
protected:
TreeNode<T>* findIn(TreeNode<T>* position,T element) const;
/*
* The last tmp argument is necessary,
* it is used here to changed the parent's _left/_right field
* to potint the node which is created
*/
TreeNode<T>* insertIn(TreeNode<T>* position,
T element,TreeNode<T>* tmp);
void travIn(TreeNode<T>* position);
void travPrev(TreeNode<T>* position);
void travPost(TreeNode<T>* position);
public:
Tree(T data)
:_root(new TreeNode<T> (data)),_size() { }
TreeNode<T>* find(T element) const;
TreeNode<T>* findMax() const;
TreeNode<T>* findMin() const;
TreeNode<T>* insert(T data);
void traversalIn();
void traversalPrev();
void traversalPost();
}; template<typename T>
void Tree<T>::travIn(TreeNode<T>* position)
{
if(!position)
return ;
travIn(position->getLeft());
std::cout << position->getData() << " ";
travIn(position->getRight());
} template<typename T>
void Tree<T>::travPrev(TreeNode<T>* position)
{
if(!position)
return ;
std::cout << position->getData() << " ";
travPrev(position->getLeft());
travPrev(position->getRight());
} template<typename T>
void Tree<T>::travPost(TreeNode<T>* position)
{
if(!position)
return ;
travPost(position->getLeft());
travPost(position->getRight());
std::cout << position->getData() << " ";
} template<typename T>
void Tree<T>::traversalPost()
{
travPost(_root);
std::cout << std::endl;
} template<typename T>
void Tree<T>::traversalPrev()
{
travPrev(_root);
std::cout << std::endl;
} template<typename T>
void Tree<T>::traversalIn()
{
travIn(_root);
std::cout << std::endl;
} template<typename T>
TreeNode<T>* Tree<T>::insertIn(TreeNode<T>* position,T data,
TreeNode<T>* tmp)
{
if(!position){
if(!tmp)
return new TreeNode<T>(data);
else
return (tmp->getData() >data ? tmp->getLeft():tmp->getRight())
= new TreeNode<T>(data,tmp);
}
if(data < position->getData())
insertIn(position->getLeft(),data,position);
else if(position->getData() < data)
insertIn(position->getRight(),data,position);
else
return position;
}
template<typename T>
TreeNode<T>* Tree<T>::insert(T data)
{
return insertIn(_root,data,);
} template<typename T>
TreeNode<T>* Tree<T>::findIn(TreeNode<T>* position,T data)const
{
while(position && position->getData() != data)
{
if(position->getData() > data)
position = position->getLeft();
else if(position->getData() < data)
position = position->getRight();
}
return position;
} template<typename T>
TreeNode<T>* Tree<T>::find(T data) const
{
return findIn(_root,data);
} template<typename T>
TreeNode<T>* Tree<T>::findMax() const
{
TreeNode<T>* tmp = _root;
while(tmp->getRight())
tmp = tmp->getRight();
return tmp;
} template<typename T>
TreeNode<T>* Tree<T>::findMin() const
{
TreeNode<T>* tmp = _root;
while(tmp->getLeft())
tmp = tmp->getLeft();
return tmp;
} #endif

二叉搜索树

Binary search tree的更多相关文章

  1. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  2. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  3. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  4. Leetcode: Convert sorted list to binary search tree (No. 109)

    Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...

  5. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  6. [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  7. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  8. [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  9. [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器

    Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...

  10. [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

随机推荐

  1. C# 中几个小“陷阱”

    每天写代码,偶尔就会有让你抓狂的时候:代码改了千百遍,蓦然回首,Bug就在灯火阑珊处……这里就列举一些容易犯错的几个小地方,以后遇到了其他的,再慢慢添加.   1. 获取程序当前运行路径   情景复现 ...

  2. 详解Javascript 函数声明和函数表达式的区别

    Javascript Function无处不在,而且功能强大!通过Javascript函数可以让JS具有面向对象的一些特征,实现封装.继承等,也可以让代码得到复用.但事物都有两面性,Javascrip ...

  3. ASP.NET使用jQuery AJAX实现MD5加密实例

    一个asp.net ajax例子,使用jquery,实现md5加密.在.NET 4.0,Visual Studio 2010上成功运行. 效果体验:http://tool.keleyi.com/t/m ...

  4. Spring AOP专业术语解析

    一. 连接点(Joinpoint) 连接点就是程序执行的某个特定的位置,如:类开始初始化前.类初始化后.类的某个方法调用前.类的某个方法调用后.方法抛出异常后等.Spring 只支持类的方法前.后.抛 ...

  5. FOR ALL ENTRIES IN 与 INNER JOIN 写在一个SQL上影响效率

    SELECT likp~vbeln likp~lfart lips~werks likp~kunnr INTO CORRESPONDING FIELDS OF TABLE it_likps FROM ...

  6. vncserver安装

    我的环境是centos6.5,如果没有安装桌面,先执行: # yum groupinstall "X Window System" "Desktop" # yu ...

  7. 【Leafletjs】5.L.Control 自定义一个Control

    L.Control 所有leaflet控制的基础类.继承自IControl接口. 你可以这样添加控件: control.addTo(map); // the same as map.addContro ...

  8. Learn RxJava

    Learn RxJava http://reactivex.io/documentation/operators.html https://github.com/ReactiveX/RxJava/wi ...

  9. tomcat内存溢出处理

    tomcat内存溢出设置JAVA_OPTS  答案1设置Tomcat启动的初始内存 其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4.可以利用JVM提供的-Xmn ...

  10. Android NDK目录介绍

    交叉编译 在一个平台上去编译另一个平台上可以执行的本地代码 cpu平台---arm x86 mips 操作系统平台---windows linux mac os 原理 模拟不同平台的特性去编译代码 j ...