正题

题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1355


题目大意

定义\(f_i\)表示斐波那契的第\(i\)项,给出一个大小为\(n\)的集合\(S\)求\(lcm(f_S)\)


解题思路

如果每个质数的次数分开考虑,那么\(gcd\)就是次数取\(min\),\(lcm\)就是次数取\(max\),所以可以套用\(min-max\)容斥的式子

\[lcm(S)=\prod_{T\subseteq S}gcd(T)^{(-1)^{|T|+1}}
\]

然后因为\(gcd(f_x,f_y)=f_{gcd(x,y)}\),那么这题的答案

\[lcm(f_S)=\prod_{T\subseteq S}f_{gcd(T)}^{(-1)^{|T|+1}}
\]

这个好像算起来很麻烦,我们可以分开考虑每个\(gcd\)的贡献。

定义\(f_n=\prod_{d|n}g_d\)

\[lcm(f_S)=\prod_{T\subseteq S}\left(\prod_{d|gcd(T)}g_d\right)^{(-1)^{|T|}+1}
\]
\[lcm(f_S)=\prod g_d^{\sum_{T\subseteq S}[d|gcd(T)](-1)^{|T|+1}}
\]

然后就是\(\sum_{T\subseteq S}[d|gcd(T)](-1)^{|T|+1}\),因为没有了空集,这个东西其实就相当于\([\exists a_i\in S,d|a_i]\)。然后就可以直接枚举每个\(d\)来求答案了。

\[lcm(f_S)=\prod_{\exists a_i\in S,d|a_i} g_d
\]

考虑\(g\)怎么构造,我们有\(f_n=\prod_{d|n}g_d\),直接移项就是\(g_n=f_n-\prod_{d|n,d\neq n}g_d\)就好了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e9+7;
ll n,m,g[N],ans;
bool v[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld",&n);g[1]=ans=1;
for(ll i=1;i<=n;i++){
ll x;scanf("%lld",&x);
m=max(m,x);v[x]=1;
}
for(ll i=2;i<=m;i++)g[i]=(g[i-1]+g[i-2])%P;
for(ll i=1;i<=m;i++){
ll inv=power(g[i],P-2);
for(ll j=2*i;j<=m;j+=i)
g[j]=g[j]*inv%P;
}
for(ll i=1;i<=m;i++){
bool flag=0;
for(ll j=i;j<=m;j+=i)
if(v[j]){flag=1;break;}
if(flag)ans=(ans*g[i])%P;
}
printf("%lld\n",ans);
return 0;
}

51nod1355-斐波那契的最小公倍数【min-max容斥】的更多相关文章

  1. 【51nod1355】斐波那契的最小公倍数(min-max容斥)

    [51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\su ...

  2. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  3. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  4. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  5. 斐波那契堆(一)之 图文解析 和 C语言的实现

    概要 本章介绍斐波那契堆.和以往一样,本文会先对斐波那契堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了 ...

  6. 斐波那契堆(二)之 C++的实现

    概要 上一章介绍了斐波那契堆的基本概念,并通过C语言实现了斐波那契堆.本章是斐波那契堆的C++实现. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆的C++实现(完整源码)4.  ...

  7. 斐波那契堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了斐波那契堆,本章给出斐波那契堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆 ...

  8. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  9. 斐波那契fib

    输入N和N个数(N<=10,每个数<=10^17),对于每个数,要输出能用几个斐波那契数加加减减得到 样例输入: 35101070 样例输出: 124 直接拷题解: fib[i]表示斐波那 ...

随机推荐

  1. open62541(opcua)传输延迟探索小记

    缘起 将open62541作为中间件使用代替自定义数据的RPC,client通过订阅valueChange来接收数据.使用时发现有一些问题: 前后两次产生的数据相同时,不会触发valueChange ...

  2. 【转】 C#中检查网络是否连通的二种方法

      1 using System;  2 using System.Collections.Generic;  3 using System.Text;  4 //方法一  5 using Syste ...

  3. ConcurrentDictionary 并发字典

    线程安全 Dictionary 本身是不支持线程安全的 线程的字典--ConcurrentDictionary 线程安全实现 写安全 以往线程安全我们通过Lock实现 比如通过lock一个全局的obj ...

  4. mfc HackerTools远程线程注入

    在一个进程中,调用CreateThread或CreateRemoteThreadEx函数,在另一个进程内创建一个线程(因为不在同一个进程中,所以叫做远程线程).创建的线程一般为Windows API函 ...

  5. java中的静态内部类

    静态内部类是 static 修饰的内部类,这种内部类的特点是: 1. 静态内部类不能直接访问外部类的非静态成员,但可以通过 new 外部类().成员 的方式访问 2. 如果外部类的静态成员与内部类的成 ...

  6. BeanUtils使用:从一个map集合中,拷贝到javaBean中(四)

    package beanutil; import java.lang.reflect.InvocationTargetException; import java.util.HashMap; impo ...

  7. springboot:嵌套使用异步注解@Async还会异步执行吗

    一.引言 在前边的文章<[springboot:使用异步注解@Async的那些坑>中介绍了使用@Async注解获取任务执行结果的错误用法,今天来分享下另外一种常见的错误. 二.代码演示 下 ...

  8. opencv入门系列教学(二)图像入门:读取、展示并保存视频

    一.从相机读取视频 通常情况下,我们必须用摄像机捕捉实时画面.让我们从摄像头捕捉一段视频(我使用的是我笔记本电脑内置的网络摄像头) ,将其转换成灰度视频并显示出来.        要捕获视频,我们需要 ...

  9. 原生 JS 与 jQuery 中的 AJAX

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 最大的优点是在不重新加载整个页面的情况下,可以与服务器交换数据并更 ...

  10. Faiss使用多线程出现的性能问题

    Faiss使用多线程出现的性能问题 faiss在增加CPU的情况下,反而出现效率低下的问题. 从理论上看,作为一个CPU/GPU计算型的应用,更多的核意味着更大的计算吞吐能力,性能只会越来越好才是. ...