Solution -「CCO 2019」「洛谷 P5532」Sirtet
\(\mathcal{Description}\)
Link.
在一个 \(n\times m\) 的网格图中,每个格子上是空白 .
或沙子 #
,四联通的沙子会连成一个整体。令此时所有沙子块同时开始匀速下落,下落时不同的沙子块不会再连成整体,求最终状态。
\(nm\le10^6\)。
\(\mathcal{Solution}\)
虽然切了但考点掌握得并不熟练。
考虑一列上的两堆沙子,上方一堆所在的块必然会被下方一堆所在的块托住,若从模拟入手,就是“先让后者下落,再让前者下落”。不过在下落过程中,沙块之间互相的限制关系频繁改变,很难直接维护。
定量分析“托住”的含义。设上块的最终下落高度为 \(f_u\), 下块的最终下落高度为 \(f_v\),那么同列的沙子为 \(f_u\) 和 \(f_v\) 之间加上的限制形如 \(f_u\le f_v+h\) —— 差分约束嘛。
如果像我一样对差分约束不敏感,可以尝试这种思考模式:限制复杂 —— 限制关系是一般图 —— 转化为特殊图?(生成树?缩点?圆方树?……)使用一般图上非 NPC 问题的算法?(最短路?2-SAT?差分约束?……)—— 发现限制可以表示为差分约束。
最后,这个差分约束没有负权,所以 \(\mathcal O(nm\log nm)\) 跑 Dijkstra 即可。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef std::pair<int, int> PII;
#define fi first
#define se second
inline void chkmin( int& u, const int v ) { v < u && ( u = v ); }
const int MAXNM = 1e6;
int n, m, cnt, **idx, lasf[MAXNM + 5], lash[MAXNM + 5];
char** grid;
int ecnt, head[MAXNM + 5], dis[MAXNM + 5];
struct Edge { int to, val, nxt; } graph[MAXNM * 2 + 5];
inline void link( const int s, const int t, const int w ) {
// printf( "%d %d %d\n", s, t, w );
graph[++ecnt] = { t, w, head[s] }, head[s] = ecnt;
}
struct DSU {
int fa[MAXNM + 5], siz[MAXNM + 5];
inline void init( const int s ) { rep ( i, 1, s ) siz[fa[i] = i] = 1; }
inline int find( const int x ) {
return x == fa[x] ? x : fa[x] = find( fa[x] );
}
inline bool unite( int x, int y ) {
if ( ( x = find( x ) ) == ( y = find( y ) ) ) return false;
if ( siz[x] < siz[y] ) x ^= y ^= x ^= y;
return siz[fa[y] = x] += siz[y], true;
}
} dsu;
inline void dijkstra() {
static std::priority_queue<PII, std::vector<PII>, std::greater<PII> > heap;
rep ( i, 0, cnt ) dis[i] = 0x3f3f3f3f;
heap.push( { dis[0] = 0, 0 } );
while ( !heap.empty() ) {
PII p( heap.top() ); heap.pop();
if ( dis[p.se] != p.fi ) continue;
for ( int i = head[p.se], v; i; i = graph[i].nxt ) {
if ( dis[v = graph[i].to] > p.fi + graph[i].val ) {
heap.push( { dis[v] = p.fi + graph[i].val, v } );
}
}
}
}
int main() {
// freopen( "tpt.in", "r", stdin );
// freopen( "tpt.out", "w", stdout );
scanf( "%d %d", &n, &m );
grid = new char*[n + 5], idx = new int*[n + 5];
rep ( i, 1, n ) {
grid[i] = new char[m + 5], idx[i] = new int[m + 5];
scanf( "%s", grid[i] + 1 );
rep ( j, 1, m ) idx[i][j] = grid[i][j] == '#' ? ++cnt : 0;
}
dsu.init( cnt );
rep ( i, 1, n ) rep ( j, 1, m ) if ( grid[i][j] == '#' ) {
if ( i > 1 && grid[i - 1][j] == '#' ) {
dsu.unite( idx[i][j], idx[i - 1][j] );
}
if ( j > 1 && grid[i][j - 1] == '#' ) {
dsu.unite( idx[i][j], idx[i][j - 1] );
}
}
rep ( i, 1, n ) rep ( j, 1, m ) if ( grid[i][j] == '#' ) {
idx[i][j] = dsu.find( idx[i][j] ), grid[i][j] = '.';
// fprintf( stderr, "(%d,%d) in %d\n", i, j, idx[i][j] );
}
rep ( i, 1, m ) lash[i] = n + 1;
per ( i, n, 1 ) rep ( j, 1, m ) if ( idx[i][j] ) {
link( lasf[j], idx[i][j], lash[j] - i - 1 );
lasf[j] = idx[i][j], lash[j] = i;
}
dijkstra();
// rep ( i, 0, cnt ) fprintf( stderr, "%d\n", dis[i] );
rep ( i, 1, n ) rep ( j, 1, m ) if ( idx[i][j] ) {
grid[i + dis[idx[i][j]]][j] = '#';
}
rep ( i, 1, n ) puts( grid[i] + 1 );
return 0;
}
Solution -「CCO 2019」「洛谷 P5532」Sirtet的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷5290」「LOJ3052」「十二省联考 2019」春节十二响【启发式合并】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 给定一棵树,每次选取树上的一个点集,要求点集中的每个点不能是另一个点的祖先,选出点集的代价为点集中权值最大点的权值,问将所有点都选一遍的最小代价为 ...
- 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- react组件性能优化PureComponent
首先我们使用react组件会配合connect来连接store获取state,那么只要store中的state发生改变组件就会重新渲染,所以性能不高,一般我们可以使用shouldComponentUp ...
- react中使用charles实现本地数据mock
首先下载charles软件地址,更详细的使用方法都包含在操作文档里,包含汉化版补丁(下载后查看) 链接:https://pan.baidu.com/s/1Q5rMbcX0Wus7AwdGUWa-Wg ...
- 第10组 Beta冲刺 (1/5)(组长)
1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/14012521.html ·作业博客:https://edu.cnblogs.co ...
- Python常用功能函数系列总结(四)之数据库操作
本节目录 常用函数一:redis操作 常用函数二:mongodb操作 常用函数三:数据库连接池操作 常用函数四:pandas连接数据库 常用函数五:异步连接数据库 常用函数一:redis操作 # -* ...
- 查询 MySQL 字段注释的 5 种方法!
很多场景下,我们需要查看 MySQL 中表注释,或者是某张表下所有字段的注释,所以本文就来盘点和对比一下查询注释的几种方式. 创建测试数据库 开始之前咱们先创建一个数据库,以备下面演示使用. -- 如 ...
- day 21 C语
(1).有以下程序: 执行后的输出结果是[A] (A).256,1 (B).1,256 (C).255,1 (D).256,0 (2).以下选项中与(!a==0)的逻辑值不等价的表达式是[B] (A) ...
- 《剑指offer》面试题11. 旋转数组的最小数字
问题描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的 ...
- XXE题型记录
XXE题型记录 [CSAWQual 2019]Web_Unagi 题解 打开题目,点开upload中的例子发现是上传xml文件 根据about中的提示Flag is located at /flag, ...
- dgv 自动换行
//设置自动换行 dgv.DefaultCellStyle.WrapMode = DataGridViewTriState.True; //设置自动调整高度 dgv.AutoSizeRowsMode ...
- 学习axios必知必会(2)~axios基本使用、使用axios前必知细节、axios和实例对象区别、拦截器、取消请求
一.axios的基本使用: ✿ 使用axios前必知细节: 1.axios 函数对象(可以作为axios(config)函数使用去发送请求,也可以作为对象调用方法axios.request(confi ...