\(\mathcal{Description}\)

  OurOJ.

  给定坐标轴上的 \(2n+1\) 个坐标 \(x_1,x_2,\cdots,x_{2n+1}\),其中偶数下标的位置是一个小球,奇数下标的位置是一个球洞。每次操作随机选择一个小球,并随机让它向左或向右滚入临近的球洞,该球洞被填满,视作平地。求所有球进洞后,球滚动总距离的期望。对 \(998244353\) 取模。

  \(n\le3000\)。

\(\mathcal{Solution}\)

  显然,\(n\) 个球进洞的总方案为 \(2^nn!\),记为 \(g(n)\)。现只需要计算所有方案的滚动距离之和。坐标实际位置并不重要,考虑一段形如 \(x_i\leftrightarrow x_{i+1}\) 的距离在多少种方案中贡献。

  贡献次数显然仅与 \(n\) 和位置 \(i\) 有关。令 \(f(i,j)\) 表示仅有 \(i\) 个球(和 \(i+1\) 个洞)时,\(x_j\leftrightarrow x_{j+1}\) 的贡献次数。转移时,考虑当前局面第一次操作:

  • 让 \(x_j\) 和 \(x_{j+1}\) 配对消失,贡献次数为剩下 \(i-1\) 个球撞完的总方案数,即 \(g(n-1)\),并且 \(x_j\leftrightarrow x_{j+1}\) 这一段被纳入了\(x_{j-1}\leftrightarrow x_{j+2}\),转移需要让坐标前移一位,那么 \(f(i,j) \leftarrow f(i,j)+g(i-1)+f(i-1,j-1)\)。

  • 操作 \(j\) 前面的球,有 \(j-1\) 种等价操作方式,当前这段没有贡献,坐标向前两位,即 \(f(i,j) \leftarrow f(i,j)+(j-1)f(i-1,j-2)\)。

  • 操作 \(j+1\) 后面的球,有 \(2i-j\) 种等价操作方式,当前这段还是没有贡献,坐标也没有影响,即 \(f(i,j) \leftarrow f(i,j)+(2i-j)f(i-1,j)\)。

  综上:

\[ f(i,j)=g(i-1)+f(i-1,j-1)+(j-1)f(i-1,j-2)+(2i-j)f(i-1,j)
\]

  答案显而易见:

\[ \frac{\sum_{i=1}^{2n}(x_{i+1}-x_i)f(n,i)}{g(n)}
\]

  复杂度 \(\mathcal O(n^2)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MAXN = 3000, MOD = 998244353;
int n, m, x[MAXN * 2 + 5], g[MAXN + 5], f[MAXN + 5][MAXN * 2 + 5]; inline int& addeq ( int& a, const int b ) {
return ( a += b ) < MOD ? a : a -= MOD;
} inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} int main () {
// freopen ( "stars.in", "r", stdin );
// freopen ( "stars.out", "w", stdout );
m = ( n = rint () ) << 1 | 1;
for ( int i = 1; i <= m; ++ i ) x[i] = rint ();
g[0] = 1;
for ( int i = 1; i <= n; ++ i ) {
g[i] = 2ll * i * g[i - 1] % MOD;
for ( int j = 1; j <= i << 1; ++ j ) {
addeq ( addeq ( addeq ( addeq ( f[i][j], g[i - 1] ), f[i - 1][j - 1] ),
( j - 1ll ) * f[i - 1][j - 2 < 0 ? 0 : j - 2] % MOD ),
( 2ll * i - j ) * f[i - 1][j] % MOD
);
}
}
int ans = 0;
for ( int i = 1; i <= n << 1; ++ i ) {
addeq ( ans, 1ll * ( x[i + 1] - x[i] ) * f[n][i] % MOD );
}
wint ( 1ll * ans * qkpow ( g[n], MOD - 2 ) % MOD ), putchar ( '\n' );
return 0;
}

\(\mathcal{Details}\)

  考场上想的统计每一对 \(i\) 球撞 \(j\) 洞的出现次数,但这个涉及到多类方案的交叉安排,而且方案间有依赖关系……就死掉啦。

  还有,暴力打半天过不了样例,手玩了一下发现距离贡献没乘方案数 qwq。

Solution -「LOCAL」客星璀璨之夜的更多相关文章

  1. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  2. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  3. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  4. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  5. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  6. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  7. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  8. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  9. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

随机推荐

  1. 编写Hive的UDF(查询平台数据同时向mysql添加数据)

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6812629187518530052/ 可能会有一些截图中会有错误提示,是因为本地的包一直包下载有问题,截完图已经下 ...

  2. 灵雀云开源网络插件Kube-OVN 1.4.0 版发布!支持跨集群容器网络、NetworkPolicy 日志

    从 1.4 开始 Kube-OVN 支持将多个 Kubernetes 集群容器网络打通,不同集群之间的 Pod 可以通过 Pod IP 直接互相通信.本版本还支持 ACL 日志,可以记录因 Netwo ...

  3. python+selenium 定位元素的主要方法

    selenium对web各元素的操作首先就要先定位元素,定位元素的方法主要有以下几种: 通过id定位元素:find_element_by_id("id_vaule") 通过name ...

  4. CTF-sql-group by报错注入

    本文章主要涉及group by报错注入的原理讲解,如有错误,望指出.(附有目录,如需查看请点右下角) 一.下图为本次文章所使用到 user表,该表所在的数据库为 test 二.首先介绍一下本文章所使用 ...

  5. 在字节,A/B 实验是这么做的!

    主要为大家介绍了为什么要做 A/B 测试.火山引擎的 A/B 测试系统架构及字节跳动内部 A/B 测试的最佳实践. 为什么要做 A/B 测试 首先我们看一个案例. 字节跳动有一款中视频产品叫西瓜视频, ...

  6. leetcode 718. 最长重复子数组

    问题描述 给两个整数数组 A 和 B ,返回两个数组中公共的.长度最长的子数组的长度. 示例: 输入: A: [1,2,3,2,1] B: [3,2,1,4,7] 输出:3 解释: 长度最长的公共子数 ...

  7. Hybrid App(混合开发) 移动端开发调试

    1.下载项目,npm install安装依赖 本地运行 npm run dev(根据具体packjson配 置而定) 2.局域网访问:http://172.20.9.35:8080/ 3.手机端访问: ...

  8. linux简单命令汇总

    ls [选项] [文件或目录] -a 显示所有文件,包括隐藏文件 -l 显示详细信息 -d 查看目录属性 -h 人性化显示文件大小 -i 显示inode mkdir [选项] 目录名 -p 递归创建 ...

  9. ros实例_百度语音+图灵

    1 百度语音模块 参考http://blog.csdn.net/u011118482/article/details/55001444 1.1 百度语音识别包 git clonehttps://git ...

  10. Cesium中文网——如何开发一款地图下载工具[一]

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Cesium中文网的朋友们的其中一个主题是:自己独立开发一款地图 ...