Codeforces 434E - Furukawa Nagisa's Tree(三元环+点分治)
场号 hopping,刚好是我的学号(指 round 的编号)
注:下文中分别用 \(X,Y,K\) 代替题目中的 \(x,y,k\)
注意到这东西长得有点像三元环,因此考虑往三元环方面考虑。我们重新建立一张图,对于两点 \(x,y\),如果 \(x\to y\) 路径对应的权值为 \(X\)(即 \(x\to y\) 这条路径属于 Furukawa Nagisa),那么我们就在 \(x\to y\) 之间连一条权值为 \(1\) 的边,否则我们在 \(x\to y\) 之间连一条权值为 \(0\) 的边,那么我们要求的即为有多少个三元组 \((x,y,z)\),满足 \(x\to y,y\to z,x\to z\) 之间全是权值为 \(1\) 的边,或者全是权值为 \(0\) 的边。我们考虑借鉴竞赛图三元环计数的一个小 trick:从反面考虑。具体来说我们考虑不合法的情况长什么样,不难发现,对于每种不合法的情况都恰好有两个点,满足与它相连的两条边恰好一条权值为 \(0\),一条权值为 \(1\)。我们记这样的点为这个三元组的“代表点”。我们考虑对每个点分别统计有多少个三元组,满足其在该三元组中作为一个代表点出现,那么一个不合法的三元组会恰好被计算两次,因此将这个数目除以 \(2\) 就是不合法的三元组个数。
那么怎么计算每个点在多少个三元组中作为代表点呢?注意到对于一个点 \(x\) 而言,与其相连的点可以被分为四类:\(y\to x\),权值为 \(0/1\),\(x\to y\),权值为 \(0/1\)。因此考虑将与 \(x\) 相连的两条边,一条权值为 \(0\),一条权值为 \(1\) 的情况分为以下四类:
- \(y\to x\),权值为 \(0\),\(z\to x\),权值为 \(1\)
- \(y\to x\),权值为 \(0\),\(x\to z\),权值为 \(1\)
- \(x\to y\),权值为 \(0\),\(z\to x\),权值为 \(1\)
- \(x\to y\),权值为 \(0\),\(x\to z\),权值为 \(1\)
不难发现对于第一种和第四种情况,\(y,z\) 之间的边既可以是 \(y\to z\),也可以是 \(z\to x\),因此贡献应该乘 \(2\),而对于第二种和第三种情况,\(y,z\) 之间边的指向唯一。故如果我们已经求出 \(c1_x\) 表示有多少个 \(y\) 满足 \(y\to x\) 的边权值为 \(1\),\(c2_x\) 表示有多少个 \(y\) 满足 \(x\to y\) 的边的权值为 \(1\),那么一个点 \(x\) 的贡献即可写作:
\]
接下来考虑怎样求出 \(c1_x,c2_x\),注意到这里涉及树上路径统计,因此考虑点分治,于是问题可以转化为如何求出经过当前分治中心 \(x\) 的路径的贡献。对于 \(x\) 所在的连通块中的点 \(y\),我们考虑一遍 DFS 找出 \(x\to y\) 路径上所有点 \(x=p_1,p_2,p_3,\cdots,p_k=y\),那么我们考虑设 \(s_y=\sum\limits_{i=2}^ka_{p_i}·K^{k-i},t_y=\sum\limits_{i=1}^ka_{p_i}·K^{i-1}\),那么对于一条 \(u\to v\) 的路径,其权值可以写作 \(s_u+t_v·K^{dep_u}\)。我们考虑从左到右遍历所有子树,那么 \(c1_v\) 会加上满足 \(s_u+t_v·K^{dep_u}\equiv X\pmod{Y}\) 的 \(u\) 的个数,这个可以开一个桶 \(b1\),然后每加入一个点 \(u\) 时,就在 \((X-s_u)·K^{-dep_u}\) 位置加 \(1\),然后通过调用 \(b1_{t_v}\) 即可求出符合要求的 \(u\) 的个数。\(c2_v\) 的贡献也同理,一个点 \(u\) 会对 \(c2_v\) 产生贡献当且仅当 \(s_v+t_u·K^{dep_v}\equiv X\pmod{Y}\),化简可得 \(t_u\equiv(X-s_v)·K^{-dep_u}\pmod{Y}\),同样开个桶 \(b2\) 维护一下即可。
时间复杂度 \(n\log^2n\)
const int MAXN=1e5;
const int INF=0x3f3f3f3f;
int n,X,Y,k,a[MAXN+5];
int hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%Y) if(e&1) ret=1ll*ret*x%Y;
return ret;
}
int pw[MAXN+5],ipw[MAXN+5];
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int siz[MAXN+5],cent=0,mx[MAXN+5];bool vis[MAXN+5];
void findcent(int x,int f,int tot){
siz[x]=1;mx[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||vis[y]) continue;
findcent(y,x,tot);siz[x]+=siz[y];
chkmax(mx[x],siz[y]);
} chkmax(mx[x],tot-siz[x]);
if(mx[x]<mx[cent]) cent=x;
}
int dep[MAXN+5],f1[MAXN+5],f2[MAXN+5];
void getdep(int x,int f){
// printf("%d %d %d %d\n",x,dep[x],f1[x],f2[x]);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||vis[y]) continue;
dep[y]=dep[x]+1;f1[y]=(1ll*f1[x]*k+a[y])%Y;
f2[y]=(f2[x]+1ll*a[y]*pw[dep[y]])%Y;
getdep(y,x);
}
}
vector<int> pt;
int res1[MAXN+5],res2[MAXN+5];
void getpts(int x,int f){
pt.pb(x);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||vis[y]) continue;
getpts(y,x);
}
}
void divcent(int x){
// printf("divcent %d\n",x);
vis[x]=1;f1[x]=0;f2[x]=a[x];dep[x]=0;
map<int,int> cnt1,cnt2;
#define insert1(x) cnt1[1ll*(X-f1[x]+Y)*ipw[dep[x]]%Y]++
#define insert2(x) cnt2[f2[x]]++
#define calc(x) (res1[x]+=cnt1[f2[x]],res2[x]+=cnt2[1ll*(X-f1[x]+Y)*ipw[dep[x]]%Y])
insert1(x);insert2(x);stack<int> stk;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]) continue;
f1[y]=a[y];f2[y]=(1ll*a[y]*k+a[x])%Y;
dep[y]=1;getdep(y,x);
}
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]) continue;
// printf("y=%d\n",y);
pt.clear();getpts(y,x);stk.push(y);
for(int z:pt) calc(z);
for(int z:pt) insert1(z),insert2(z);
} cnt1.clear();cnt2.clear();
while(!stk.empty()){
int y=stk.top();stk.pop();
// printf("y=%d\n",y);
pt.clear();getpts(y,x);
for(int z:pt) calc(z);
for(int z:pt) insert1(z),insert2(z);
} calc(x);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]) continue;
cent=0;findcent(y,x,siz[y]);divcent(cent);
}
}
int main(){
scanf("%d%d%d%d",&n,&Y,&k,&X);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
pw[0]=ipw[0]=1;pw[1]=k;ipw[1]=qpow(k,Y-2);
for(int i=2;i<=n;i++){
pw[i]=1ll*pw[i-1]*pw[1]%Y;
ipw[i]=1ll*ipw[i-1]*ipw[1]%Y;
} mx[0]=INF;findcent(1,0,n);divcent(cent);
for(int i=1;i<=n;i++) if(a[i]==X) res1[i]++,res2[i]++;
// for(int i=1;i<=n;i++) printf("%d %d\n",res1[i],res2[i]);
ll res=0;
for(int i=1;i<=n;i++){
int rst1=n-res1[i],rst2=n-res2[i];
res+=2ll*rst1*res1[i];res+=1ll*rst1*res2[i];
res+=1ll*rst2*res1[i];res+=2ll*rst2*res2[i];
} printf("%lld\n",1ll*n*n*n-(res>>1));
return 0;
}
Codeforces 434E - Furukawa Nagisa's Tree(三元环+点分治)的更多相关文章
- 【CF434E】Furukawa Nagisa's Tree 点分治
[CF434E]Furukawa Nagisa's Tree 题意:一棵n个点的树,点有点权.定义$G(a,b)$表示:我们将树上从a走到b经过的点都拿出来,设这些点的点权分别为$z_0,z_1... ...
- Codeforces Gym 100342J Problem J. Triatrip 三元环
题目链接: http://codeforces.com/gym/100342 题意: 求三元环的个数 题解: 用bitset分别统计每个点的出度的边和入度的边. 枚举每一条边(a,b),计算以b为出度 ...
- Codeforces Gym 100342J Problem J. Triatrip 求三元环的数量 bitset
Problem J. Triatrip Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...
- Codeforces Gym 100342J Problem J. Triatrip bitset 求三元环的数量
Problem J. TriatripTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/att ...
- Codeforces 985G - Team Players(三元环)
Codeforces 题目传送门 & 洛谷题目传送门 真·ycx 做啥题我就做啥题 考虑枚举 \(j\),我们预处理出 \(c1_i\) 表示与 \(i\) 相连的编号 \(<i\) 的 ...
- BZOJ.5407.girls(容斥 三元环)
题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\ ...
- BZOJ 3498 PA2009 Cakes(三元环处理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...
- HDU 6184 Counting Stars 经典三元环计数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...
- BZOJ3498PA2009 Cakes——三元环
题目描述 N个点m条边,每个点有一个点权a.对于任意一个三元环(j,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求所有三元环的贡献和.N<100000,,m< ...
随机推荐
- python的函数参数传递方式
python的一切数据类型都是对象.但是python的对象分为不可变对象和可变对象.python的变量是引用,对python变量的赋值是引用去绑定该对象. 可变对象的数据发生改变,例如列表和字典,引用 ...
- 3 Implementation: The Big Picture 实现:蓝图
三.Implementation: The Big Picture 实现:蓝图 3.1 Layering of a .NET Solution .Net解决方案的分层 The picture belo ...
- 使用flink实现一个简单的wordcount
使用flink实现一个简单的wordcount 一.背景 二.需求 三.前置条件 1.jdk版本要求 2.maven版本要求 四.实现步骤 1.创建 flink 项目 2.编写程序步骤 1.创建Str ...
- Java I/O框架 - 总结概述
总结 以下需要重点掌握: 字节流,以下读取结束全部返回-1 字节节点流-访问文件 FileInputStream/FileOutputStream 可以读取任意文件 可以复制图片 读取字符String ...
- 求树的直径【两遍BFS】
两遍BFS.从任意一个点出发,第一遍可以找到直径的一端,从这端出发即可找到另外一端. 证明:从U点出发,到达V[画个图便清晰了] 1.如果U在直径上,则V一定是直径的一个端点. 2.如果U不在直径上. ...
- JAVA笔记13__创建线程/线程休眠/等待线程终止/线程中断/守护线程
/** * 线程:是进程的一个执行路径,共享一个内存空间,线程之间可以自由切换,并发执行,一个进程最少有一个进程(单线程程序) * 多线程两种实现方法:1.继承Thread类 2.实现Runnable ...
- Dubbo之负载均衡、并发控制、延迟暴露、连接控制
1.并发控制 dubbo服务端和消费端都做了并发控制,分别在配置中有相应的对应配置: 服务端:executes服务提供者每服务每方法最大可并行执行请求数,控制并发数量:actives每服务消费者每服务 ...
- 检查redis是否正常运行
[XX@XXX]$ ps -ef | grep redisXX 8047 1 0 10:06 ? 00:00:03 redis-server *:6379XX 9983 9802 0 11:2 ...
- Webshell 一句话木马
Webshell介绍 什么是 WebShell webshell就是以asp.php.jsp或者cgj等网页文件形式存在的一种命令执行环境,也可以将其称做为一种网页后门 由于 webshell其大多是 ...
- go闭包使用
1.带参数闭包函数 func main() { //先调用闭包外面的方法传给变量 add_func := add(1, 2) //再调用里面的方法,因为有了i++ 同一个内存地址 在一次编译中i的值会 ...